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ABSTRACT 

* The calculation and implementation of the neighboring optimal 

feedback control law for multi-input nonlinear dynamical systems, 

using discontinuous control, is the subject of this study. The con- 

cept of neighboring optimal feedback control of systems with continuous, 

unbounded control functions has been investigated by others. A separate 

treatment of the problem is necessary, however,when the control function 

is discontinuous. 

tems with bounded control inputs is desired. 

features of this class of problems are the control discontinuities 

and the inherent system uncontrollability when the number of remaining 

switch times is less than the number of speckfied terminal constraints. 

In this paper, a derivation of the neighboring optimal control law 

This is often the case when optimal control of sys- 

The different,iating 

is presented, and a feedback mechanization of this control law is 

described. The neighboring control law is determined by minimizing 

the second-order terms in the expansion of the performance index about 

an optimal, nominal path. A distinction is made between real time along 

the neighboring path and nominal time along the nominal path. The con- 

cept of "time-to-go" is used to choose the nominal time. 

is applied in two different ways, depending upon whether the terminal 

time is fixed or free. An open-loop algorithm which determines the 

number of neighboring switch times, the initial and final control 

functions, and the most appropriate nominal path , is presented. This 

algorithm initiates the feedback phase of the mechanization of the neigh- 

boring control law. The feedback mechanization allows for a possible re- 

ordering of the control-component switching sequence, and requires 

storage of only a small number of feedback gain matrices. 

This concept 
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Three example problems, inc luding  t h e  minimum-time sa te l l i t e  

a t t i t u d e - a c q u i s i t i o n  problem, are presented,  These problems demon- 

strate t h e  f e a s i b i l i t y  of  neighboring opt imal  feedback con t ro l  of 

systems wi th  d iscont inuous  c o n t r o l  func t ions ,  and show t h e  a c t i o n  

of t h e  neighboring c o n t r o l  scheme when appl ied  t o  states which do 

not  l i e  i n  t h e  immediate neighborhood of t h e  nominal t r a j e c t o r y .  

For t h e s e  p a r t i c u l a r  examples, it w a s  found t h a t  t h e  neighboring 

c o n t r o l  scheme works q u i t e  w e l l  even when t h e  dev ia t ions  i n  t h e  

neighboring s ta te ,  away from t h e  nominal, are l a rge .  When t h e s e  

dev ia t ions  are l a r g e ,  however, t h e  te rmina l  c o n s t r a i n t s  can no longer 

be s a t i s f i e d  exac t ly .  
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CHAPTER I 

INTRODUCTION 

The calculation and implementation of optimal, discontinuous 

control laws for high-order systems is of current interest. 

continuous control law is one that requires sudden changes of the con- 

trol components from one discrete level to another. Optimal control 

laws which are discontinuous, often arise when the components of the 

control are bounded in magnitude. 

problems which is of interest in this study. 

A dis- 

It is this class of optimization 

1.1 Problem# Motivation 

Minimum-time and minimum-fuel control laws are often discontinuous. 

Several techniques have been developed to find minimum-time and minimum- 

fuel open-loop control functions for a specified initial state. 

for some very special, low-order systems, have optimal feedback control 

laws been determined. 

Only 

A problem involving a high-order, multi-input system, of current 

interest in the aerospace field, is the minimum-fuel or minimum-time 

attitude control of an orbiting satellite. This problem involves a 

6th-order system with three bounded control inputs when three cold gas 

jets with bounded thrusts are used as the controlling mechanism, An 

optimal feedback control law, valid for all points in state-space, has 

proved all but impossible to obtain for a high-order system such as this. 

It is possible, however, to obtain a feedback control law, which is nearly 

optimal, and which is valid for a restricted region in state-space. 

Developing such a control scheme, applicable to multi-input, nonlinear, 

high-order systems, using discontinuous control, is the objective of 

this study. 
1 



The approach used here  is similar t o  t h e  approach used by o the r s  

f o r  systems wi th  unbounded c o n t r o l  and continuous con t ro l  func t ions .  

A neighboring opt imal  feedback con t ro l  l a w  i s  der ived which i s  v a l i d  

f o r  po in t s  i n  s t a t e - space  t h a t  are i n  the  neighborhood of an  opt imal ,  

nominal t r a j e c t o r y .  A neighboring opt imal  feedback c o n t r o l  l a w  i s  a 

c o n t r o l  l a w  which i s  based upon t h e  state d e v i a t i o n  from a nominal 

optimum path,  and upon t h e  open-loop c o n t r o l  func t ion  used t o  genera te  

t h e  nominal path.  The technique used t o  genera te  t h i s  c o n t r o l  l a w  i s  

t o  expand t h e  performance index, t o  second-order,  about t h e  nominal 

pa th ,  and then  determine t h e  c o n t r o l  d e v i a t i o n s ,  away from t h e  nominal, 

by minimizing t h e  second-order terms i n  t h e  expansion.* 

Three example problems, inc luding  t h e  minimum-time a t t i t u d e  

c o n t r o l  problem mentioned above, are presented i n  t h i s  paper .  The 

purpose of p re sen t ing  t h e s e  examples i s  twofo1d:l) To demonstrate t h e  

f e a s i b i l i t y  of a neighboring optimal c o n t r o l  scheme f o r  systems pos- 

s e s s i n g  d iscont inuous  c o n t r o l  func t ions ,  and 2) t o  show t h e  a c t i o n  

of t h e  neighboring c o n t r o l  l a w  when i t  i s  appl ied  t o  states which do 

not  l i e  i n  t h e  immediate neighborhood of t h e  nominal t r a j e c t o r y .  

1 .2  Previous Resu l t s  

Seve ra l  techniques have been d iscussed  i n  t h e  l i t e r a t u r e  f o r  

s o l v i n g  opt imiza t ion  problems which r e s u l t  i n  opt imal ,  discont inuous,  

open-loop c o n t r o l  func t ions .  

t o  so lve  t h e s e  op t imiza t ion  problems are those  of Hales [l] and Wolske [21.** 

Among t h e  f i r s t - o r d e r  a lgori thms developed 

* 
It w i l l  be  shown, i n  Sec t ion  3.2, t h a t  t h e  opt imal  nominal and 

neighboring c o n t r o l  l a w s  are i d e n t i c a l  t o  f i r s t - o r d e r .  
** 

Numbers i n  b racke t s ,  [ * I r  r e f e r  t o  r e fe rences  given at t h e  end 
of t h i s  paper.  

2 



Hales' method i s  q u i t e  gene ra l ,  bu t  convergence t o  the  optimal s o l u t i o n  

i s  slow, 

h i s  a lgor i thm is  r e s t r i c t e d  t o  handle only minimum-fuel problems. 

The rate of convergence of Wolske's method is  e x c e l l e n t ,  bu t  

Seve ra l  second-order a lgor i thms have a l s o  been developed t o  so lve  

t h e s e  problems. Among t h e  most recent  are those  developed by Dyer and 

McReynolds [ 3 , 4 ] ,  and Jacobson [5].  The theory upon which t h e s e  a lgo-  

r i thms are based i s  t h e  same. The a lgor i thm of Jacobson, however, ap- 

pears  t o  be s u p e r i o r  s i n c e  it i s  less s e n s i t i v e  t o  t h e  i n i t i a l  choice 

of t h e  c o n t r o l  h i s t o r y .  McNeal [ 6 ]  a l s o  proposed a second-order 

a lgor i thm which i s  based upon a somewhat d i f f e r e n t  t h e o r e t i c a l  approach. 

A l l  of t h e  above methods, however, are i terat ive techniques which 

converge t o  t h e  open-loop s o l u t i o n  o f  t h e  opt imiza t ion  problem. The 

use  of t h e  second v a r i a t i o n  t o  ob ta in  a neighboring optimal feedback 

c o n t r o l  l a w  was proposed, independent ly ,  by Breakwell e t  al. [7]  and 

Kel ley [81. It w a s  assumed by t h e s e  au tho r s ,  however, t h a t  t h e  avail-  

a b l e  c o n t r o l  e f f o r t  i s  unbounded? and t h a t  t h e  c o n t r o l  h i s t o r i e s  are 

continuous.  Hence, t h i s  theory  i s  not app l i cab le  t o  problems f o r  

which t h e  opt imal  c o n t r o l  l a w  i s  discont inuous.  

F i r s t  McIntyre [ 9 ] ,  and then  McNeal [ 6 ] ,  considered the  problem 

of neighboring opt imal  feedback c o n t r o l  wi th  discont inuous c o n t r o l  

func t ions .  Both au tho r s  expanded t h e  performance index t o  second- 

o r d e r  about an opt imal ,  nominal path,  and then  determined t h e  neigh- 

bo r ing  c o n t r o l  l a w ,  i n  terms of dev ia t ions  from t h e  nominal con t ro l  

l a w ,  by minimizing t h e  second-order terms i n  t h e  expansion. 

au thor  assumed t h a t  only one c o n t r o l  v a r i a b l e  of a mul t i - input  dynamical 

system was  discont inuous.  I n  add i t ion ,  McNeal considered t h e  case where 

measurement n o i s e  and/or random dis turbances  a c t  on t h e  system. The 

Each 
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r e s u l t s  of t h e  present  s tudy ,  concerning systems wi th  mul t i -  

dimensional d i scont inuous  c o n t r o l  func t ions ,  are b a s i c a l l y  i n  

agreement wi th  those  r e s u l t s  of  McIntyre and M c N e a l  which p e r t a i n  

t o n o i s e - f r e e  systems with a scalar discont inuous c o n t r o l  funct ion.  

The d e r i v a t i o n  he re ,  however, is  somewhat d i f f e r e n t  from those  of t h e  

o t h e r  two authors .  

cNeal, nor McIntyre,  made a d i s t i n c t i o n  between real 
- 

t i m e ,  t , a long  t h e  neighboring path,  and nominal t i m e ,  t a long 

t h e  nominal path.  Hence, bo th  au thors  i m p l i c i t l y  assumed t h a t  t = t 

i n  t h e i r  mechanization of  t h e  neighboring c o n t r o l  l a w .  With t h i s  choice 

f o r  t h e  nominal t i m e ,  t h e  neighboring c o n t r o l  law mechanization descr ibed 

by M c N e a l  and McIntyre becomes open-loop a f t e r  t h e  nominal switch times 

and nominal f i n a l  t ime, when t h e  switch-time and f ina l - t ime  pe r tu rba t ions  

a r e  pos i t ive ."  This  technique h ighly  restricts the  reg ion  i n  s t a t e - space  

f o r  which the  neighboring c o n t r o l  l a w  i s  app l i cab le ,  and a l s o  could lead 

t o  excess ive  e r r o r s  i n  multi-dimensional discont inuous c o n t r o l  problems. 

The mere f a c t  t h a t  t he  mechanization i s  not  e n t i r e l y  a feedback mechani- 

z a t i o n  is ,  of course ,  undesirable .  

- 

Speyer and Bryson [ l o ] ,  and Powers [ll], did  d i s t i n g u i s h  between 

real t i m e  and nominal t i m e  ( index-t ime) ,  f o r  t h e  case of neighboring 

opt imal  c o n t r o l  of systems w i t h  cont inuous,  unbounded c o n t r o l  func t ions .  

Speyer and Bryson chose t 

f i n a l  t i m e  i s  t h e  same f o r  bo th  neighboring and nominal t r a j e c t o r i e s .  

Powers chose t such t h a t  a weighted d i s t a n c e  between t h e  neighboring 

c u r r e n t  state and t h e  nominal pa th  is minimized. 

- 
such t h a t  es t imated  time-to-go u n t i l  t h e  

- 

The technique of 

" 
This  f a c t  i s  d iscussed  i n  Sec t ion  4 . 4 ,  
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Powers appears t o  be d i f f i c u l t  t o  implement when the  system i s  high- 

order ,  whereas t h e  method of Speyer and Bryson r equ i r e s  an accu ra t e  

estimate of t h e  f i n a l - t i m e ,  which may be d i f f i c u l t  t o  ob ta in  when noise  

i s  p resen t  i n  t h e  system. I n  each case ,  however, the  mechanization of 

t h e  neighboring c o n t r o l  l a w  i s  e n t i r e l y  a feedback mechanization. The 

"time-to-go" concept i s  used i n  the  present  s tudy  t o  choose 

t h e  neighboring,  discont inuous c o n t r o l  l a w  i s  e n t i r e l y  a feedback c o n t r o l  l a w .  

- 
t such t h a t  

F i n a l l y ,  bo th  McIntyre and McNeal assume t h a t  t h e  number of switch 

t i m e s  and t h e  i n i t i a l  c o n t r o l  v e c t o r ,  f o r  t h e  neighboring pa th ,  are 

known. Davison and Monro 1121 have developed a f i r s t - o r d e r ,  open- 

loop, i terative procedure f o r  ob ta in ing  t h i s  information f o r  minimum- 

t i m e  c o n t r o l  problems. The neighboring feedback c o n t r o l  l a w  algori thm, 

descr ibed  i n  t h e  present  paper,  a s c e r t a i n s  t h i s  information f o r  any 

type  of d iscont inuous  c o n t r o l  problem. 

1 . 3  Contr ibut ions  

The p r i n c i p a l  c o n t r i b u t i o n s  o f  t h i s  s tudy  are t h e  following: 

1. A neighboring opt imal  c o n t r o l  l a w ,  v a l i d  f o r  states neigh- 

bor ing  a n  opt imal ,  nominal t r a j e c t o r y ,  is der ived  for  systems which 

possess  d iscont inuous  opt imal  c o n t r o l  func t ions .  High-order, non- 

l i n e a r  systems, w i th  multi-dimensional c o n t r o l  func t ions ,  are COR- 

s ide red .  The problem whose s o l u t i o n  determines t h e  neighboring 

opt imal  c o n t r o l  l a w ,  i s  reduced t o  t h e  s imples t  form of a parameter 

op t imiza t ion  problem. The s o l u t i o n  of t h i s  problem i s  obtained by 

s o l v i n g  a set  of l i n e a r ,  coupled a l g e b r a i c  equat ions.  This  c a l c u l a t i o n  

i s ,  t h e r e f o r e ,  e a s i l y  performed on a d i g i t a l  computer. 

2. A feedback mechanization of t h e  neighboring c o n t r o l  l a w  

i s  descr ibed .  Switching func t ions  f o r  each component of t h e  c o n t r o l  

v e c t o r  are derived.  These swi tch ing  func t ions  are cons t ruc ted  from 



preca lcu la t ed  ga ins ,  which are, i n  t u r n ,  a func t ion  of t h e  nominal 

t i m e  (a parameter a s soc ia t ed  wi th  t h e  nominal t r a j e c t o r y ) .  Using 

t h e  concept of "time-to-go" (see Sec t ion  4 . 2 ) ,  two schemes, depending 

upon whether t h e  t e rmina l  t i m e  i s  f ixed  o r  free, are proposed f o r  

choosing t h e  nominal t i m e .  These schemes en la rge  t h e  reg ion ,  i n  

state-space, f o r  which t h e  feedback c o n t r o l  scheme i s  app l i cab le .  

When t h e  mechanization of t h e  feedback c o n t r o l  l a w  t akes  t h e  form of 

a d i g i t a l  c o n t r o l l e r ,  a r eo rde r ing  of  t h e  sequence i n  which t h e  

control-components switch i s  poss ib le .  

3. An open-loop a lgor i thm,  which a s c e r t a i n s  t h e  number of 

swi tch  times, t h e  i n i t i a l  and f i n a l  c o n t r o l  v e c t o r ,  and t h e  appro- 

priate nominal t r a j e c t o r y ,  i s  descr ibed.  Th i s  a lgor i thm i s  used 

dur ing  t h e  i n i t i a l  s t ages  of t h e  c o n t r o l  scheme when t h e  above i n -  

formation i s  not  a v a i l a b l e .  The a lgor i thm i s  computat ional ly  s imple,  

and thus  t h e  a s soc ia t ed  Computation t i m e  has  l i t t l e  e f f e c t ,  i n  genera l ,  

upon t h e  performance of t h e  feedback phase of t h e  c o n t r o l  scheme. 

4. The s i z e  of t h e  reg ion  i n  s t a t e - space ,  about t h e  nominal 

t r a j e c t o r y ,  f o r  which t h e  c o n t r o l  scheme g ives  meaningful r e s u l t s ,  

i s  i n v e s t i g a t e d  by cons ider ing  t h r e e  example problems. 

g ive  t h e  neighboring c o n t r o l  l a w  a severe tes t ,  a t h i r d - o r d e r  problem, 

wi th  a h ighly  nonl inear  opt imal  swi tch ing  su r face ,  i s  considered. To 

demonstrate t h e  f e a s i b i l i t y  of c o n t r o l l i n g  high-order  systems by t h e  

neighboring opt imal  feedback c o n t r o l  technique ,  a 6 -order  system 

wi th  t h r e e  c o n t r o l  i npu t s  i s  discussed.  

I n  o rde r  t o  

t h  

1.4 

The s p e c i f i c  problem of i n t e r e s t  i n  t h i s  s tudy is  formulated i n  

Chapter 11. The dynamical d e s c r i p t i o n  of t h e  system i s  given,  and an  



optimization problem is posed (Optimization Problem I). It has been 

shown by others that a neighboring optimal feedback control law can- 

not be derived from the solution of Optimization Problem I since exact 

satisfaction of terminal constraints is required. Therefore, a second 

optimization problem is posed (Optimization Problem II), which is free 

of terminal constraints, and from which a neighboring optimal feedback 

control law can be derived, The relationships between the solutions 

of these two optimization problems is discussed in detail. 

The solution of Optimization Problem I1 is determined in Chapter 111. 

The performance index is expanded, to second-order, about an optimal, 

nominal path, the nominal path being determined by solving Optimization 

Problem I. The control parameters (switch-time and final-time pertur- 

bations) are determined by minimizing the second-order terms in the ex- 

pansion of the performance index. The equations which determine the 

control parameters are written in matrix form so that matrix algebra 

can easily be used to solve for these parameters. The resulting solu- 

tion is then used to formulate a neighboring optimal feedback control 

law. 

To implement the control law derived in Chapter 111, it is 

necessary to determine the number of switch times, the initial and 

final control vectors, and the most appropriate nominal trajectory. 

An open-loop algorithm to accomplish this is presented in Chapter IV. 

The distinction between real and nominal time is discussed, and a 

technique for choosing the nominal time is described. 

of this technique is supported by a heuristic argument and the re- 

sults, obtained through its use, presented in Chapter v. The claim 

that this technique is always the best technique for choosing the 

The validity 
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nominal time cannot be made. 

boring optimal control law is also described in Chapter IV. 

mechanization requires that one monitor, simultaneously, the appro- 

priate switching function for each component of the control vector. 

By so doing, one allows for the possibility of a reordering of the 

control-component switching sequence. 

A feedback mechanization of the neigh- 

This 

Three example problems are considered in Chapter V. The first 

two problems involve low-order, linear systems with scalar control 

inputs, The last problem involves a nonlinear, 6 -order system 

with three control inputs. The first problem is the minimum-fuel 

settling-time problem for the 1/s 

lem is to demonstrate the use of the neighboring feedback control law 

mechanization for fixed terminal-time problems. The remaining two 

problems are the problem of minimum-time control of the l /s (s  + 1) 
plant, and the minimum-time satellite attitude-acquisition problem. 

These problems demonstrate the use of the neighboring feedback con- 

trol law mechanization for free terminal-time problems. It is felt 

that this choice of example problems gives a representative picture 

of the utility of neighboring optimal feedback control. 

th 

2 plant. The intent of this prob- 

2 

Finally,.a summary of the basic results and conclusions of this 

study is presented in Chapter VI, 
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CHAPTER I1 

PROBLEM FORMULATION 

I n  t h i s  chap te r ,  t h e  class of dynamical systems considered i s  

def ined  and two opt imiza t ion  problems are posed, Optimizat ion Prob- 

l e m  I and Optimizat ion Problem 11. The nominal path,  depic ted  

schemat ica l ly  by T r a j e c t o r y  I i n  Fig.  2.1, and t h e  nominal c o n t r o l  

l a w ,  f o r  t h e  i n i t i a l  nominal state x are determined by so lv ing  

Optimizat ion Problem I. 

Optimizat ion Problem I f o r  t h e  optimal feedback c o n t r o l  l a w  f o r  an  

i n i t i a l  s tate x neighboring x . The corresponding opt imal  

t r a j e c t o r y  i s  dep ic t ed  schemat ica l ly  by Tra j ec to ry  11 i n  Fig.  2.1. 

I n  gene ra l ,  a neighboring opt imal  feedback c o n t r o l  l a w  f o r  Optimiza- 

t i o n  Problem I does not  exist s i n c e  te rmina l  e q u a l i t y  c o n s t r a i n t s  are 

incorpora ted  i n  t h e  problem statement .  

Optimizat ion Problem I is  t h e r e f o r e  modified,  and a f r e e  end-point 

op t imiza t ion  problem (Optimizat ion Problem 11) i s  posed. The s o l u t i o n  

of t h i s  problem gives  a neighboring opt imal  feedback c o n t r o l  l a w  f o r  

i n i t i a l  state x neighboring x which i s  a sub-optimal s o l u -  

t i o n  of Optimizat ion Problem I w i t h  i n i t i a l  s tate x . The neighboring, 

sub-optimal t r a j e c t o r y  is  depic ted  schemat ica l ly  by Tra j ec to ry  111 i n  

Fig.  2.1. 

- 
o 2  

The o b j e c t i v e  of t h i s  s tudy i s  t o  so lve  

- 
0 ,  0 

The performance index of 

- 
o 2  o 2  

0 

2.1 System S p e c i f i c a t i o n  

The system dynamical equat ions  are given by 

where x( t )  i s  t h e  (n x 1) state v e c t o r ,  u ( t )  i s  t h e  (m x 1) 

9 



TRAJECTORY I 
--e- TRAJECTORY II 
I_.- TRAJECTORY m 

Figure 2.1. Two-Dimensional Example Trajectories Depicting the Nom- 
inal Path (I) , the Optimal Path Determined from Optim- 
ization Problem I(I.1) , and the Optimal Path Determined 
from Optimization Problem I1 (111). 
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control vector, f [ e  9 . 1  is an (n x 1) vector function, and x is 

the specified initial state vector, It is implicit in Eq. 2.1, and 
0 

is assumed in the theory to follow, that time t never appears explicitly 

in the system dynamics or in the statement of the optimization problem. 

This study is restricted to optimization problems which result 

in discontinuous control laws. It is therefore assumed that 

f [x(t) , u(t) I is a linear function of ui(t) , i = 1 , Y m ,  

and that 

where It is assumed 

that f[x(t) , u(t)] is at least twice differentiable with respect 

Pi , i = 1 , * * *  , m , are positive constants. 

, tf] , where t is the final f to x(t) in the time interval [t 

t ime . 
2 . 2  Optimization Problem 

The solution of the optimization problem posed in this section, 
- 

for the optimal control law for an initial state x , defines the 

nominal path 

u(t) , te[tO , tf] e 

path will be indicated by a Itbar" above their respective symbols. 

0 - -  - -  - 
x(t) , tc[to , tfl , and the nominal control history, 

- -  - -  - 
All quantities associated with the nominal 

The need to distinguish between real time along a neighboring path, t, 
- 

and nominal time, t , will become evident in Section 3 . 4 .  

The scalar performance index of interest in this study is given by 

- -  - €f 
J" = F'[g(Ff)l + L[z(F), u(t)]dF - 

t 
0 

' - -  
where F [x(tf)] is a scalar function of the final state and 

(2 .3 )  
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- -  - -  - - -  
L [ x ( t )  , u ( t ) ]  

and s ta te  h i s t o r i e s ,  

t €[to, t f ]  , i s  a scalar func t ion  of  t h e  con t ro l  

The te rmina l  e q u a l i t y  c o n s t r a i n t s  which are 

imposed upon t h e  system are def ined  by 

where Y [;Ef)] i s  a (q x 1 v e c t o r  func t ion  of t h e  f i n a l  s ta te  

and q 5 n e The f i n a l  t i m e ,  tf , may o r  may not  be spec i f i ed .  It 

i s  assumed t h a t  t h e s e  te rmina l  c o n s t r a i n t s  are such t h a t  t h e  i n i t i a l  

- 

state,  f o r  t h e  system of  Eq. 2.1,  i s  c o n t r o l l a b l e  i n  t h e  al lowable 

t i m e  s p e c i f i e d  f o r  t h e  problem. 

Again, t o  i n s u r e  t h a t  t h e  s o l u t i o n  of t h e  opt imiza t ion  problem 

w i l l  y i e l d  a d iscont inuous  c o n t r o l  l a w ,  i t  i s  necessary t o  assume 
- -  - -  

t h a t  L [ x ( t )  , u ( t ) l  is  a t  most a l i n e a r  func t ion  of t h e  components 

of u ( t )  e To  i n s u r e  t h a t  t h e  opt imal  c o n t r o l  l a w  i s  d iscont inuous ,  
- -  

it  i s  assumed t h a t  no s i n g u l a r  arcs appear i n  t h e  s o l u t i o n  of  t h e  

op t imiza t ion  problem posed below.* F i n a l l y ,  i t  i s  assumed t h a t  

F ' [e]  , Y[ . ]  , and L E - , . ]  are a t  least twice d i f f e r e n t i a b l e  wi th  

r e s p e c t  t o  x ( t )  i n  t h e  t i m e  i n t e r v a l  [to,tf] a 
- -  - -  

Later t h e o r e t i c a l  cons ide ra t ions  warrant  a s i m p l i f i c a t i o n  i n  t h e  

performance index, J", a t  t h e  expense of i nc reas ing  t h e  dimension of 
- 

- -  - -  - -  
t h e  state vec to r ,  When L [ x ( t ) ,  u ( t ) l  , t e [ t o ,  t f l  , i s  not i d e n t i -  

c a l l y  zero,  t h e  s ta te  is  augmented as fol lows:  

(2.5) 

* 
See [13], Chapter 8, f o r  a d e f i n i t i o n  and d i scuss ion  of s i n g u l a r  arcs. 
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- 
The performance index,  

index 

J" , may thus  be  replaced by t h e  performance 

- c  To minimize t h e  performance index J sub jec t  t o  t h e  te rmina l  

'3' c o n s t r a i n t s ,  Eq. 2.4, t h e  te rmina l  c o n s t r a i n t s  are adjoined t o  

wi th  a (q x 1) v e c t o r  of Lagrange m u l t i p l i e r s ,  I, , t o  form t h e  

augmented performance index: 

(2.7) 

The op t imiza t ion  problem f o r  t h e  nominal pa th  i s  thus  s t a t e d  as follows: 

Optimizat ion Problem I 

For t h e  dynamical system defined by 

. - -  - -  - -  - -  - 
0) 

x( t )  = f [ x ( t )  , u ( t ) l  y x ( t  ) = x 
0 

- -  - - 
choose a c o n t r o l  v e c t o r ,  

c o n s t r a i n t s  (Eq.2.2), which minimizes J (Eq. 2 . 7 ) ,  and choose v 

u ( t ) , t E : ~ o , t f ] ,  s u b j e c t  t o  t h e  c o n t r o l  
I 

such t h a t  t h e  t e rmina l  c o n s t r a i n t s  (Eq. 2.4) are s a t i s f i e d .  

2.3 Relaxa t ion  of Terminal Cons t r a in t s  

I n  [6] ,  McNeal d i scusses  and demonstrates t h e  f a c t  t h a t ,  i n  

gene ra l ,  a neighboring optimal feedback c o n t r o l  l a w  f o r  Optimization 

Problem I does not e x i s t  f o r  an  i n i t i a l  s tate x neighboring x e 
0, 0 

Along t h e  la t ter  s t a g e s  of t h e  neighboring t r a j e c t o r y ,  t h e  feedback 

ga ins  o f  t h e  neighboring c o n t r o l  l a w  become i n f i n i t e .  

f o r  a f ixed  f i n a l  t i m e  problem, when t h e  number of remaining switch 

- 

S p e c i f i c a l l y ,  
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times, N , along the neighboring path is less than the number of 

terminal constraints, q , the system is uncontrollable to the extent 
that N control decisions are insufficient in number to satisfy q 

terminal constraints. When tf is free an additional control decision 

is available. For this class of problems, the system is uncontrollable 

once (N + 1) < q . 
To alleviate the problem of uncontrollability, and hence insure 

the existence of a neighboring optimal feedback control law, a new 

optimization problem is posed in which insistence on exact satisfaction 

of the terminal constraints is relaxed. 

lem for the optimal control law for an initial state x 

x 

initial state x e 

The solution of the new prob- 

neighboring 
0’ - 

will be an approximate solution of Optimization Problem I with 
0’ 

0 

Only approximate satisfaction of the terminal constraints will be 

required in the new optimization problem.* 

by adding a penalty term to the performance index, J (Eq. 2.7), for 

This may be accomplished 
- 

non-satisfaction of the terminal constraints, and then formulating a 

free end-point optimization problem. The penalty term takes the form 

K T  - 2 y [X(tf) IWY [X(tf) 1 

where K is a scalar positive constant and W is a (q x q) positive- 

definite weighting matrix, As K increases in magnitude from zero, 

the cost of non-satisfaction of Eq. 2.4 increases, and hence the com- 

ponents of Y[x(t ) I  are reduced in magnitude by the control law, f 

9; 
This approach was also followed by McNeal in [ 6 ] .  
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The choice  of W 

Y [ x ( t f ) ]  , more than  o t h e r s ,  f o r  be ing  non-zero. 

a l lows one t o  pena l ize  c e r t a i n  components of 

The new opt imiza t ion  problem, which w i l l  be  solved i n  Chapter I11 

t o  g ive  a neighboring opt imal  feedback c o n t r o l  l a w  f o r  po in t s  neigh- 

bo r ing  t h e  nominal path,  i s  thus  s t a t e d  as follows: 

Optimizat ion Problem I1 

For t h e  dynamical system descr ibed  by 

choose a c o n t r o l  v e c t o r ,  

c o n s t r a i n t s  (Eq. 2.2), which minimizes t h e  scalar performance index* 

u ( t ) ,  t e [ t O , t f ]  , sub jec t  t o  t h e  c o n t r o l  

where v i s  t h e  (q x 1) v e c t o r  of Lagrange m u l t i p l i e r s  obtained i n  

t h e  s o l u t i o n  of Optimizat ion Problem I wi th  t h e  i n i t i a l  state x 

and x i s  an  i n i t i a l  state neighboring x . 
- 
0 ,  - 

0 0 

* T 

t o  i n s u r e  t h a t ,  t o  f i r s t - o r d e r ,  Optimizat ion Problem I i s  i d e n t i c a l  t o  
Optimizat ion Problem 11. That i s ,  t h e  presence of t h i s  t e r m  i n su res  
t h a t  t h e  nominal c o n t r o l  l a w  is  i d e n t i c a l  t o  t h e  neighboring c o n t r o l  
l a w ,  t o  f i r s t - o r d e r  (see Sec t ion  3.2). 

The v Y p ]  term i n  t h e  performance index (Eq. 2.10) i s  necessary 
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BHAPTER I11 

DERIVATION OF NEIGHBORING OPTIMlpL FEEDBACK CONTROL LAW 

The neighboring opt imal  feedback c o n t r o l  l a w  i s  determined by 

s o l v i n g  Optimizat ion Problem 11 with  a n  i n i t i a l  state x neighboring 

t h e  nominal path. 

s o l v i n g  Optimizat ion Problem I wi th  an  i n i t i a l  s ta te  x Since i t  

i s  assumed t h a t  x is  a neighboring state of x Optimizat ion 

Problem I1 may be solved by expanding t h e  performance index, Eq. 2.10, 

about t h e  nominal path,  and then  determining t h e  neighboring c o n t r o l  

l a w  i n  terms of d e v i a t i o n s  i n  t h e  nominal c o n t r o l  l aw.  It w i l l  be  

seen t h a t ,  s i n c e  t h e  nominal pa th  i s  opt imal ,  t h e  neighboring and 

nominal c o n t r o l  l a w s  are i d e n t i c a l  t o  f i r s t - o r d e r .  I n  t h e  a n a l y s i s  

below, t h e r e f o r e ,  Eq. 2,lO i s  expanded t o  second-order,  about t h e  

nominal pa th ,  and t h e  second-order terms are then  minimized with 

respect t o  t h e  c o n t r o l  parameters. This  g ives  an approximate s o l u t i o n  

t o  Optimizat ion Problem I1 which becomes exact as dev ia t ions  i n  t h e  

neighboring pa th ,  away from t h e  nominal path,  approach zero. 

0' 

The nominal pa th  and c o n t r o l  l a w  are determined by 
- 
0 * - 

0 0 '  

- ** -- - - 
The f i n a l  t i m e ,  t t h e  f i n a l  c o n t r o l  v e c t o r ,  u ( t f  ) , N f Y  

swi tch  t i m e s  at which c o n t r o l  d i s c o n t i n u i t i e s  occur ,  and t h e  a s s o c i -  

a t e d  c o n t r o l  level changes, completely de f ine  t h e  nominal c o n t r o l  

* - It i s  i m p l i c i t l y  assumed t h a t  i f  xo is  i n  t h e  neighborhood of 
xo 
s ta te  E(T),Te Eo,T'f] , 
** - - +  

t = t .  + e ,  where E: i s  a p o s i t i v e  cons tan t .  This  n o t a t i o n  i s  used 

throughout t h e  remainder of t h i s  work f o r  q u a n t i t i e s  which are discon-  

t i nuous  at t i m e  t 

then  each state x ( t ) ,  t e  [ t o y t f ] ,  i s  i n  t h e  neighborhood of some 

- 
u ( t i  ) i s ,  by d e f i n i t i o n ,  t h e  va lue  of t h e  con t ro l  v e c t o r  a t  time - - -  

E+Q 1 

- 
i 
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h i s to ry .*  It i s  assumed t h a t  t h e  number of swi tch  t i m e s  a long t h e  

nominal path,  denoted by , is  i d e n t i c a l  t o  t h e  number of switch 

times along t h e  neighboring path.  Thus, t h e  f ina l - t ime  dev ia t ion  
- 

away from t f  , and t h e  dev ia t ions  i n  t h e  switch times away from 

t h e i r  nominal va lues ,  are t h e  c o n t r o l  parameters which d e f i n e  the  

neighboring c o n t r o l  l a w .  Determining t h e  opt imal  va lues  of t h e s e  

d e v i a t i o n s  i s  t h e  o b j e c t i v e  of t h i s  chap te r ,  

3 .1  Determinat ion of O p t i m a l  Nominal Path 

The nominal path and c o n t r o l  l a w  are determined by so lv ing  

Optimizat ion Problem I. It is  assumed, f o r  t h e  p re sen t ,  t h a t  t h e  

t e rmina l  t i m e  i s  f r e e .  Problems wi th  f ixed  te rmina l  t i m e  are d i s -  

cussed a t  t h e  end of  t h i s  chapter .  

The v a r i a t i o n a l  Hamiltonian f o r  t h e  system of Eq. 2.8 i s  def ined 

t o  be  

- -  
where h ( t )  i s  t h e  a d j o i n t  v e c t o r  f o r  t h e  system. Pontryagink 

"Minimum P r i n c i p l e "  [141 gives  a set  of necessary condi t ions  f o r  

J (Eq. 2 . 7 )  t o  have a t  least  a l o c a l  minimum. These necessary 

cond i t ions  f o r  op t ima l i ty  of  u ( t )  are s t a t e d  as follows: 

- 
- -  

* 
The choice  of spec i fy ing  u(tf ' )  i n s t ead  of t he  seemingly - -  

more l o g i c a l  q u a n t i t y ,  u(to+) , w i l l  be  j u s t i f i e d  i n  Chapter I V .  



Eq. ( 3 . 2 ) - ( 3 . 5 ) ,  along wi th  t h e  dynamical equat ions  (Eq. 2 .8 )  and 

t h e  t e rmina l  c o n s t r a i n t s  (Eq. 2 . 4 ) ,  are a mathematically c o n s i s t e n t  

se t  of r e l a t i o n s h i p s  t h a t  w i l l  y i e l d  an opt imal  c o n t r o l  l a w ,  u (’Ej , 

which w i l l  l o c a l l y  minimize J . Eq. 3.4  i s  t h e  t r a n s v e r s a l i t y  con- 

d i t i o n  and need be s a t i s f i e d  only when t h e  te rmina l  t i m e  i s  f r e e .  

Eq. 3 . 2  and Eq. 3 .3  d e f i n e  

equat ions  f o r  t h e  system of Eq. 2.8. The assumption t h a t  no s i n g u l a r  

a r c s  occur i n  t h e  s o l u t i o n  of t h i s  problem impl ies  t h a t  t h e  opera t ion  

ind ica t ed  i n  Eq. 3.5 can be performed t o  y i e l d  a w e l l  def ined ,  d i s -  

continuous optimal c o n t r o l  l a w .  

- 
. O P  - 

- -  - - -  
X(t ) ,  t e [ t o , t f l  , and are t h e  a d j o i n t  

Severa l  techniques are descr ibed  i n  t h e  l i t e r a t u r e  t o  so lve  

t h i s  two-point boundary va lue  problem. The s o l u t i o n  t akes  t h e  form 
- -  - - - 

of a s t a t e  h i s t o r y ,  x ( t ) , t c [ t o , t f ] ,  and a c o n t r o l  h i s t o r y .  The 
- 

c o n t r o l  h i s t o r y  i s  descr ibed  by a set of N switch times, a s soc ia t ed  

s t e p  changes i n  t h e  magnitude of t he  components of t h e  c o n t r o l  func t ion ,  

t h e  f i n a l  c o n t r o l  vec to r ,  and t h e  f i n a l  t i m e .  It i s  assumed t h a t  only 

one component 

swi tch  t i m e . *  
- 

i n  u . (F)  , i s  
J 

of t h e  c o n t r o l  v e c t o r  undergoes a s t e p  change at a given 

The i th -switch t i m e ,  a s soc ia t ed  wi th  a s t e p  change 
- 

The a s soc ia t ed  s t e p  change i n  c . ( F )  
t i j  e J 

denoted by 

* 
It i s  h ighly  u n l i k e l y  t h a t  t h e  numerical  s o l u t i o n  of t h e  two- 

poin t  boundary va lue  problem w i l l  r e s u l t  i n  two con t ro l -vec to r  com- 
ponents swi tch ing  at e x a c t l y  t h e  same t i m e .  
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i s  def ined  t o  be 

The swi tch  times are ordered as follows: 

- 
Hence, t h e  f i r s t  s u b s c r i p t  of t i n d i c a t e s  t h e  number of remaining 

i j  - -  
d i s c o n t i n u i t i e s  i n  t h e  c o n t r o l  func t ion  i n  t h e  t i m e  i n t e r v a l  [tijytf) . 
The second s u b s c r i p t  i n d i c a t e s  t h e  component of t h e  c o n t r o l  func t ion  

- 
e An example c o n t r o l  h i s t o r y  i s  which i s  d iscont inuous  at time 

i l l u s t r a t e d  i n  Fig.  3 . 1  i n  o rde r  t o  f u r t h e r  c l a r i f y  t h e  n o t a t i o n  i n -  

t i j  

troduced i n  Eq. 3 .6  and Eq. 3 . 7 .  

When spec i fy ing  t h e  sequence of nominal swi tch  t i m e s  by 
- 
t , i = l  , * * *  , E; j c  [ l , . * * , m ]  , i t  i s  implied t h a t  j assumes i j  

a sequence of va lues  which d e f i n e s  t h e  o rde r  i n  which t h e  components 

of t h e  nominal c o n t r o l  func t ion  undergo s t e p  changes. This  same 

sequence, determined by t h e  chosen nominal path,  a l s o  de f ines  t h e  

sequence of va lues  which j assumes when spec i fy ing  t h e  neighboring 

swi tch  times and t h e  switch-time pe r tu rba t ions  (see Sec t ion  3 . 2 ) .  

It i s  assumed, i n  t h e  remainder of t h i s  chapter ,  t h a t  Optimizat ion 

The fo l lowing  q u a n t i t i e s  are t h e r e f o r e  con- 

i j  

Problem I has been solved.  

s ide red  t o  be  prescr ibed:  t , i = 1 ; * * , N ;  j e [ l , * e e , m ]  ; 

Ai u 

- - 
- - - -  - -  - - - 

, i = l , - . * , N ;  j c  [ l ; * . , m ] ;  t f ;  u ( t f - ) ;  x ( t ) , t c [ t o , t f l ;  V 
j 

3 . 2  Expansion of Performance Index About t h e  Nominal Pa th  

Define t h e  pe r tu rba t ion ,  b(t) , of a vec to r  a(t) t o  be 
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Figure 3.1. An Example Control History Which Demonstrates the Use of 
the Notation Introduced in Eq. 3.6 and Eq. 3.7. 
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and d e f i n e  t h e  s t e p  change, A.a ,* of a discont inuous vec to r  a ( t )  

a t  t i m e  t , t o  b e  

1 

i j  

Ais 3 a(t i j  - ) - C X ( t i j  + ) . 

This  n o t a t i o n  w i l l  be  used ex tens ive ly  i n  t h e  fol lowing theory .  

The c o n t r o l  parameters t o  be  determined are t h e  f ina l - t ime  

p e r t u r b a t  ion ,  

- 
6t = t f f - t f '  

(3  9) 

(3.10) 

and t h e  switch-t ime pe r tu rba t ions ,  

- - .. t , i = l , * * * , N ;  j s [ l , " * , m l  . (3.11) % E i j  i j  

These pe r tu rba t ions  are assumed t o  be p o s i t i v e  i n  t h e  fol lowing ana- 

l y s i s .  The r e s u l t s  obtained below, however, are i n v a r i a n t  t o  t h e  

s i g n  of t h e  c o n t r o l  pe r tu rba t ions .  Th i s  i s  t r u e  s i n c e  a l l  s ta te  and 

c o n t r o l  pe r tu rba t ions  are assumed t o  be  i n f i n i t e s i m a l ,  Furthermore,  

t h i s  assumption and E q .  3.7 imply t h a t  t h e  neighboring switch times 

s a t i s f y  t h e  fol lowing i n e q u a l i t i e s :  

E q .  3 . 1 2  i s  u t i l i z e d ,  below, i n  t h e  d e r i v a t i o n  of t h e  neighboring 

opt imal  c o n t r o l  law.** 

(3.12) 

* 
This  n o t a t i o n  has a l r eady  been used i n  Eq. 3.6 f o r  a scalar. 

It should be  kept  i n  mind t h a t  t h e  mathematical developments 
** 
i n  t h i s  chapter  are, s t r i c t l y  speaking, v a l i d  only when t h e  pe r tu r -  
b a t i o n s  are i n f i n i t e s i m a l .  When t h e  r e s u l t s  of t h i s  chapter  are 
appl ied  t o  problems wi th  f i n i t e  pe r tu rba t ions ,  some of t h e  r e l a t i o n -  
s h i p s  used t o  c a l c u l a t e  t h e  opt imal  c o n t r o l  l a w ,  v a l i d  f o r  i n f i n i t e s i -  
m a l  pe r tu rba t ions ,  are no longer  s a t i s f i e d .  I n  p a r t i c u l a r ,  allowance 
is made, i n  Chapter I V ,  f o r  a poss ib l e  reorder ing  of t h e  neighboring 
swi tch  t i m e s  (i .e. allowance i s  made f o r  poss ib l e  non- sa t i s f ac t ion  of 

21 E q .  3 . 1 2 ) .  



I n  t h i s  s e c t i o n ,  t h e  performance index w i l l  be expanded t o  second- 

o rde r  i n  t h e  i n i t i a l - s t a t e ,  t h e  f ina l - t ime ,  and t h e  switch-time pe r tu r -  

b a t i o n s .  Wri t ing  J ( E q .  2.10) i n  terms of  tf and 6 t f  and then  

expanding t o  second-order i n  t h e  performance index may 

be  w r i t t e n  

6x(Ff + 6 t f )  , 

- -  
where t h e  f a c t  t h a t  Y[x(t  ) I  = 0 has been u t i l i z e d .  Define t h e  

(n x n) symmetric ma t r ix  P as follows:* 

f - 

S u b s t i t u t i n g  E q .  3.14 and E q .  3.3 i n t o  E q .  3.13 then  g ives  

J = F[Z(Ff)] +x T ( F f ) 6 ~ ( F f  + 6 t f )  4- @X T (Ff + 6 t f )F6x( t f  4- E t f ) .  (3.15) 

- -  
Since  F [x ( t , ) l  i s  independent of t h e  c o n t r o l  parameters,  i t  is  omitted 

J. 

i n  t h e  express ion  f o r  

The expansion of 

6 x ( t f )  i s  written** 

J i n  t h e  remainder of t h i s  d i scuss ion .  

6 x ( t f  + 6tf)  t o  second-order i n  6 t f  and 

* 

* 
The last t e r m  i n  Eq. 3.14 was not  ob ta ined  by McNeal ( see [6 ] ,  

E q .  3,5),  

** 
I n  t h e  remainder of t h i s  paper ,  a func t ion ,  ( ~ [ e , " ] ,  of t h e  - -  

nominal state and c o n t r o l  v e c t o r s ,  i s  w r i t t e n  a ( t ) ,  i , e .  f[z(F), 
T(Q1 res> e 
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is  t h e  nth-order i d e n t i t y  matr ix .  The f a c t  t h a t  6u ( t f )  = 0 I n  where 

w a s  used i n  w r i t i n g  Eq. 3.16,* This  f a c t  again follows from Eq. 3.7  

and the assumption t h a t  t h e  switch-time pe r tu rba t ions  a r e  i n f i n i t e s i m a l .  

Now, 6 x ( t  ) may be w r i t t e n  f 

6X(tf)  f 6x (t ) + 5xII (Tf> + . * e  

I f  (3.17) 

where 6xI (7,) 

and 6xIr( t f )  

which spec i fy  

and Eq. A.6 i n  

Eq. 3.17 ,  i n t o  

g ives  t h e  f i r s t - o r d e r  terms i n  t h e  expansion of 6 x ( t f )  , 
gives  t h e  second-order terms. The dynamical equat ions 

6XI(t) and 6xII (t), t < t < tf , are giveil by Eq. A . l  
0 -  - 

Appendix A ,  r e spec t ive ly .  S u b s t i t u t i n g  6x ( t f )  , from 

Eq. 3.16,  and then  s u b s t i t u t i n g  t h i s  r e s u l t  i n t o  Eq. 3 .15 ,  

J may be w r i t t e n ,  after r ea r r ang ing  terms, 

T -  - 3 - - -  - T -  Z -  2 + %6x ( t  )P6x (7 ) + &[f ( t f ) P f ( t f )  + h ( t f ) f ( t f ) ] 6 t f  I f  I f  (3 .18)  

where terms higher  than  second-order have been omit ted,  and Eq. 3.4  
- ! -  - _  

was u t i l i z e d  t o  e l imina te  t h e  X ( t  ) f ( t  ) term. f f  

The pe r tu rba t ion ,  6xI(z) ,  i s  t h e  f i r s t - o r d e r  s o l u t i o n  of t h e  

f i r s t - o r d e r  per turbed  dynamical equat ions.  These equat ions ,  between 

nominal swi tch  t i m e s ,  are w r i t t e n  

&(F) = TX(q Ex(;) + Tu(:) 6 U ( t )  ; 6X(t 0 ) = 6xo 0 (3 .19)  

c *  * 
From Eq. 3.8 ,  6u( t  ) = 0 implies  t h a t  u ( t  f ) = u ( t f )  . Hence, i t  

i n  order  
f 

i s  necessary t o  choose a nominal path such t h a t  ;(: ) = u ( t f )  

t o  mechanize t h e  r e s u l t s  of t h i s  chapter  ( see  Sec t ion  4 . 3 ) .  
f 
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- - 
To so lve  Eq. 3 .19  f o r  6 x ( t ) ,  t h e  f a c t  t h a t  t i j  + 6 t i j  < t(i-l)j, - - - 
i = 2 , e * e , N ;  j c [ l , * g - , m l 3  and t + 6 t  < t f 9  j e 

u t i l i z e d .  These i n e q u a l i t i e s  are aga in  a consequence 

Ij  I j  

t h e  assumption t h a t  t h e  switchAtime pe r tu rba t ions  are 

From Appendix A ,  Eq, 8.5, t h e  f i r s t - o r d e r  s o l u t i o n  of  

6 x ( t f )  is* - 
N - -  

&XI (t,) = 0 ( t f ' t 0 )  sxo + 1 @(t f' t. 1J .) A p t i j  

i= 1 

where @ ( * , " )  i s  t h e  state t r a n s i t i o n  ma t r ix  €or  Eq. 

[1,*e*,mI9 i s  

of Eq. 3 , 7  and 

i n f i n i t e s i m a l ,  

Eq, 3 .19  f o r  

(3 .20)  

3 . 1 9 . '  

Note t h a t  @(t  t )  s a t i s f i e s  t h e  a d j o i n t  equat ions  f o r  t h e  f' 
system of Eq. 3 .19:  

- -  
Also, r e c a l l  from Eq. 3 . 2 ,  t h a t  x ( t )  s a t i s f i e s  

AT - ,T - - x (t) = - x ( t ) f x ( r > .  

Thus, zT(F) may be w r i t t e n  

Using Eq, 3 .23 ,  Eq. 3 . 2 0 ,  and t h e  d e f i n i t i o n  of t h e  Hamiltonian 

(Eq. 3 e 1 ) 3  one ob ta ins  t h e  fol lowing r e s u l t s :  

3 
-T - -T - -T - 

i= 1 

L 

t i j  Y 

* 
It is  h e r e a f t e r  understood t h a t  j ,  i n  t h e  sequence 

i = 1;00,N, assumes a sequence of va lues  def ined  by t h e  nominal 

pa th ,  and hence t h e  n o t a t i o n  j e [ l ; = - , m ]  w i l l  be omitted.  

(3 .21 )  

(3 .22 )  

(3 .23)  

(3 .24 )  
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The last equality is valid since the nominal path is optimal and 

-T - - 
hence Ai H = 0, i = lra*e,N Thus X (tf)6xI(tf) may be omitted 

in E q .  3,18 since this term is independent of the control parameters. 

Now, using Eq. 3.1 in Eq. 3.18, and using the fact that 

J is rewritten as 

(3.25) 

(3.26) 

From Appendix A, Eq. A.18, the ith-component of 6xII(Ff) is given by 
- 
tf n 

(3.27) 

where, from Eq. A . 4  in Appendix A, 6x (t ) is given by I kj 

- - -  - -  
6xI(Fkj) = Q (tkjYto)6x 0 + 1 m(tkj,t..)dp6t 1 J  ij , k=l,.**,N . (3.28) 

It follows from Eq. 3.28 that 
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i = k  

(3.29) 

F i n a l l y ,  s u b s t i t u t i n g  E q .  3.27 i n t o  E q .  3.26, and making use  of 

E q .  3,23 and Eq.  3.1, t he  performance index i s  w r i t t e n  

- 
N (3.30) 

The i n t e g r a l  term i n  Eq.  3.30 i s  der ived i n  Appendix B ,  Eq.  B.1 .  

I n  t h e  fol lowing s e c t i o n s ,  J,  as i t  appearsin Eq. 3.30, w i l l  

be  minimized by choosing optimal values  of 6 t f  and 6 t i j  , 

i = 1 , @ * *  ,N 

second-order i n  t h e  state, t h e  switch-time, and t h e  f ina l - t ime  p e r -  

t u rba t ions .  This  means t h a t ,  t o  f i r s t - o r d e r ,  t h e  neighboring optimal 

feedback c o n t r o l  l a w  i s  i d e n t i c a l  t o  t h e  nominal c o n t r o l  l a w .  Th i s  

fol lows from t h e  f a c t  t h a t  t h e  nominal pa th  i s  opt imal ,  and the  f a c t  

- 
It should be noted t h a t  each t e r m  i n  Eq,  3.30 i s  of 
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t h a t  t h e  f i r s t - o r d e r  necessary condi t ions  of op t ima l i ty  f o r  Optimization 

Problem I a r e  i d e n t i c a l  t o  those €or  Optimizat ion Problem 11. 

3.3 Ca lcu la t ion  of Final-Time and Switch-Time Pe r tu rba t ions  

The performance index, J , as i t  i s  expressed i n  Eq. 3,30, 
- 

i s  a func t ion  of  

def ined  by t h e  nominal path.  When SxI(tf) (Eq. 3.20), 6xI(Tkj)$ 

6 t f ,  6 t k j ,  k = l , e o e , N 2  and prescr ibed  q u a n t i t i e s  

- - -  
k = l , " ' , N  (Eq. 3.28), and Sx ( t ) , t e [ F O , t f l  (Eq. 3.29), are I 
s u b s t i t u t e d  i n t o  Eq. 3.30, t h e  func t iona l  dependence of J upon t h e  

c o n t r o l  parameters i s  e x p l i c i t .  The c o n t r o l  parameters are c o n s t r a i n t -  

f r e e .  Thus, Optimizat ion Problem I1 i s  reduced t o  t h e  s imples t  form 

of a parameter op t imiza t ion  problem. 

The c o n t r o l  parameters are, t h e r e f o r e ,  determined by so lv ing  a 

set of (E + 1) a l g e b r a i c  equat ions  obtained by d i f f e r e n t i a t i n g  J 

r e s u l t i n g  c o n t r o l  l a w  n e c e s s a r i l y  g ives  J a s t a t i o n a r y  value.  T o  

i n s u r e  t h a t  t h i s  s t a t i o n a r y  va lue  i s  a minimum, t h e  mat r ix  of second 

p a r t i a l  d e r i v a t i v e s  wi th  r e spec t  t o  

p o s i t i v e - d e f i n i t e .  Since t h e  nominal c o n t r o l  l a w  i s  minimizing, 

t h i s  s u f f i c i e n c y  c a l c u l a t i o n  w i l l  i n  genera l  no t  be necessary.  It 

i s  conceivable ,  however, t h a t  a neighboring c o n t r o l  l a w  could g ive  

J a l o c a l  maximum value .  This  problem i s  not  considered i n  t h i s  

s tudy ,  and thus  t h e  s u f f i c i e n c y  c a l c u l a t i o n  is omitted.  

- 
6 t f , 6 t  k = l , " ' , N ,  must be k j '  

From Eq. 3.20, Eq. 3.28, and Eq. 3.29, i t  i s  seen t h a t  6xI(yf) ,  
- 

6x (F .), k = l , * * * , N ,  and Sx (F),Fclr ,t 3 ,  are independent of 

6 t f  e D i f f e r e n t i a t i n g  J wi th  r e s p e c t  t o  6 t f  and equat ing  t o  

I kJ I o f  
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zero thus g ives  

( 3 . 3 1 )  - e - -  + Hx( t f ) f ( t f ) ]Gt f  = 0 e 

Define t h e  (1 x n) v e c t o r  E t o  be 

Then, so lv ing  Eq. 3 .31  f o r  6 t f  gives 

- 
6tf = -mx (t ) . I f  ( 3 . 3 3 )  

- - 
Now form N equat ions,  t o  determine 6tki ,  k = l , = & = , N ,  

by equat ing t o  zero the  d e r i v a t i v e s  of J wi th - r e spec t  t o  6 t k j ,  - 

- - -  + 4LEx6x,(tkj)+(-H - ( t  - +  .> 7 + % H x f ( t k j ) ) 6 t k j  
x kj % 

- 
k = 1,"" , N ,  g ives  "j' D i f f e r e n t i a t i o n  of Eq. 3 . 2 0  w i t h  r e spec t  t o  

( 3 . 3 5 )  
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- 
and differentiation of Eq. 3.28 with respect to Etkj, k=l,*** ,N, 
gives 

- - 
k=l,*--,N; i=l,""',N. 

, k s i  1 a6xI (ti. 
= o  a6tkj 

(3.36) 

The second term in Eq. 3.34 is evaluated in Appendix B and given by 

Eq. B.6. Now substitute Eq. 3.33, Eq. 3.35, Eq. 3.36, and Eq. B.6 into 
Eq. 3.34, and rearrange terms: 

- 
N 

+ 1 @(~,f. .)Ai?&. .Id7 
1 J  1 J  

i= 1 

k- 1 
(3.37) 

&= 1 

- 
Since 6t has been eliminated, Eq. 3.37 represents N linear, - - f 

coupled equations for the N control parameters 6tkj, k=l,ae* 9 N. 
To solve these equations for the control parameters, they will 

first be written in matrix form. 

notation is introduced: 

To accomplish this, the following 
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- 6ts = ( 3 . 3 8 )  

- - - _  - - +  - -  
h(t..) E -H (t..)A.-f+ AiHxf(t..) 

1 J  X 1J 1 1 J  

- 
Using this notation, 6xI(tf) is written (see Eq. 3 . 2 0 )  

- 
and +Hx6xI(Tkj) is written - 

N 

Substituting Eq. 3.46  and Eq. 3.47  into Eq. 3 . 3 7 ,  using the above 

( 3 . 3 9 )  

( 3 . 4 0 )  

( 3 . 4 1 )  

( 3 . 4 2 )  

( 3 . 4 3 )  

( 3 . 4 4 )  

( 3 . 4 5 )  

( 3 . 4 6 )  

( 3 . 4 7 )  

notation, using the properties of the state transition matrix, and 
rearranging terms, then gives 
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k r  
- 
N 1 

- 
N k- 1 

@(tij,t >Etij =o, c - -  - 
- -  - 
W(tkj,t. =J .>6tij + kj 

i= 1 

- -  
kj + h(tkj)6t 

i=k+l 

( 3 . 4 8 )  

Finally, the following notation is introduced in order to write 
Eq. 3 . 4 8  in matrix form: 

( 3 . 4 9 )  

(3.50) 
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( 3 . 5 1 )  

( 3 . 5 2 )  

( 3 . 5 3 )  

Using the above notation, the N equations in Eq. 3 . 4 8  may now be 

written in the following compact form: 

Solving Eq. 3 .54  for 6t gives 
S 
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S u b s t i t u t i n g  Eq. 3.46 i n t o  E q .  3 . 3 3 ,  6 t f  becomes 

( 3 . 5 6 )  

The above theory  a p p l i e s  t o  f r e e  te rmina l - t ime problems. When 
- 

tf i s  s p e c i f i e d ,  6 t f  0, and hence M = 0. I f  i s  rep laced  by 

P ( see  E q .  3 . 3 9 ) ,  then Eq. 3.55 a l s o  g ives  t h e  switch-t ime pe r tu rba t ions  
- 

f ixed  te rmina l - t ime problems. 

When t h e  system dynamics a r e  l i n e a r  i n  t h e  s t a t e ,  as  w e l l  as i n  

- - - - 
0 and Y = 0. Also, AiHx 0, i = l , - - . , N ,  and hence D = 0 and 

w(*,') 0. For t h i s  system, t h e  f i n a l - t i m e  p e r t u r b a t i o n  i s  given by 

Eq. 3.56 and t h e  switch-t ime p e r t u r b a t i o M  a r e  modified t o  become: 

- T -  - - - -  - - - I + - -  - - -  
6 t  = - [R ( t  ,t-.)UR(t t- )+VI R ( t  , t - . )UQ(tf , to) t jx0 ( 3 . 5 7 )  

S f NJ  f '  N j  f NJ  

- 
where V i s  def ined  t o  be 

- - +  - 
HX(tlj)% f 0 

- 
V E -  

- - +  0 Hx ( t G  j ) @$ 

- -  
Note t h a t  t h e  c o e f f i c i e n t s  of Q ( t f , t o ) 6 x o  i n  Eq. 3.55 and 

E q .  3 .57  are completely def ined  by t h e  nominal path.  They can, 

( 3 . 5 8 )  

t h e r e f o r e ,  be  p r e c a l c u l a t e d ,  and then  appl ied  t o  any i n i t i a l  s ta te  

x neighboring x . The neighboring opt imal  feedback c o n t r o l  l a w  

f o r  t h e  dynamical system of  Eq. 2 .1  i s  der ived  from t h e  r e s u l t s  of t h i s  

- 
0' 0 

s e c t i o n  i n  t h e  next  s ec t ion .  Implementation of t h i s  c o n t r o l  law i s  

d iscussed  i n  Chapter I V .  
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3 . 4  Neighboring Optimal Feedback Control Law 

Denote the number of switch times along the neighboring path by 
* - 

to be GNy N. Define the (N x n) matrix, 

- 
G = 0, N=O, N 

- 
to be 

go’ 
and define the (1 x n) matrix, 

- 
Then, from Eq.  3 .55  with N replacing N, 6ts is written 

- 
and, from Eq. 3 .56  with N replacing N, 6tf is written 

Define the neighboring switch-time vector to be 

t r  
S 

t - t  lj o 

2j o 
t - t  

tNj- to- 

( 3 . 5 9 )  

( 3 . 6 0 )  

( 3 . 6 1 )  

( 3 . 6 2 )  

( 3 . 6 3 )  

- * The total number of switch times along the nominal path is 
If N I N, then N is interpreted to be the number of remaining 
switch times along the nominal path, when used, instead of N, in the 
calculations of the previous sections. Recall that, in these sections, 
it was assumed that the number of neighboring switch times is identical 
to the number of nominal switch times. 

N. 
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Then, using Eq. 3 . 8 ,  Eq. 3 . 6 1 ,  and Eq. 3 . 6 2 ,  the open-loop estimates 

for the switch times and the final time, for the neighboring path, 

are given by 

- -  - - -  - -  
= t -t -g @(t t )[x(to>-x(to>l * f o 0 f’ 0 

( 3 . 6 4 )  

( 3 . 6 5 )  

The closed-loop estimates for the switch times and the final 

time, for a neighboring path with current state x(t), are obtained 

from Eq. 3 .64  and Eq. 3.65  by replacing with t and with 
- 

- *  
t :  

( 3 . 6 6 )  

- - 
in the definitions 

to a 
where t replaces t and t replaces 

of ts and ts a respectively. The need for distinguishing between 

real time, t , and nominal time, t a is apparent in Eq. 3.66 and 

Eq. 3 . 6 7 .  The determination of t is discussed in Chapter IV. 

o a  - 
- 

- 

The neighboring optimal feedback control law is stated in terms 

of Eq. 3.66 , Eq. 3.67 ,and the step changes in the nominal control 

law (Eq. 3 . 6 ) :  

- 
are defined to be to and * 

j 
and t 

(N+U j When N = E , t 
to , respectively. 
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Neighboring Optimal Feedback Control Law 

Let N be the number of switch times along the neighboring 

path. When t = t ie[l,e**,N], as determined from Eq. 3 . 6 6 ,  ij’ 

then u.(t) = u.(t 1) - A %  t 2 t When t = tf’ as J J iJ i j’ ij‘ 
determined from Eq. 3.67, then u(t) = 0, t 2 tf. 

An algorithm, which mechanizes this control law, is presented in the 

next chapter. 
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CHAPTER IV 

IMPLEMEXTATION OF FEEDBACK CONTROL LAW 

In this chapter, an algorithm is developed which implements the 

neighboring optimal control law derived in Chapter 111. The main fea- 

tures of this algorithm are the determination of the nominal time and 

the use of the open-loop control law to choose the correct feedback 

gains. The "time-to-go" concept of Speyer and Bryson [ l o ]  is used 
to choose t , and the 0pe.n-loop control law is used to ascertain the 

number of switch times and the initial control function for the neigh- 

- 

boring path. 

The neighboring optimal control law was derived by assuming that 

the state and switch-time perturbations are infinitesimal. The follow- 

ing inequalities are a consequence of this assumption, and were utilized 

in Chapter I11 to derive the neighboring optimal control law: 

(4.2) 

Since the neighboring control law will be applied to states which are 

a finite distance from the nominal path, the swttich times and switch- 

time perturbations for the neighboring path will, in general, not 

satisfy the above inequalities. 

4 . 1  by a neighboring contro1,history which violates some of the above 

inequalities. The mechanization of the neighboring control law must, 

therefore, be designed to account for possible non-satisfaction of 

This situation is illustrated in Fig. 

Eq. 4.1 - Eq. 4 . 3  e 
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Figure 4.1. An Example Control History for E i c h  Eq. 4.1-- Eq. 4.3 
Are Violated: tsl> t43 ; tZ3> tll  , tsl> t43 ; 
t > tf' 11 
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4.1 Switching Funct ions Based Upon Nominal Time 

The number of remaining switch t imes along the  neighboring (and 

nominal) t r a j e c t o r i e s ,  i n  t he  t i m e  i n t e r v a l  

by N The t o t a l  number of switch t i m e s ,  i n  t he  time i n t e r v a l  

[ t  , t  ] , along t h e  nominal pa th ,  has been denoted by N . To mechanize 

the  neighboring c o n t r o l  l a w  i t  i s  necessary t o  assume t h a t  t he  maximum 

number of neighboring switch t imes i s  l e s s  than  o r  equal  t o  N That 

i s ,  N 8 [0,1,'"",N] . 

[ t , t f ]  , has been denoted 

- -  - 
O f  

- 

- 
- 

For each p o s s i b l e  va lue  of N , t h e  mat r ix  of ga ins ,  GN , can be 

c a l c u l a t e d  from Eq. 3.59 . These ga ins  a r e  used t o  c a l c u l a t e  t he  cu r ren t  

e s t ima te  of t h e  neighboring switch t imes ( see  Eq. 3.66): 

t h  - - 
GN by gN . Then, from Eq. 4.4, t he  N - t h  

Designate t h e  N -row of 

swi tch  t i m e  f o r  t he  neighboring path i s  given by 

.From Eq. 3.60 and Eq. 3.67 , t he  f i n a l  time i s  given by 

- - -  - - - -  
= t + t f -  t- M @ ( t f y t ) [ x ( t )  - ~ ( t ) ]  , t .< t 5 tf 2 

t f  13  

t . < t F t f .  
1 3  

Now d e f i n e  S (t,;) and S f ( t , F )  as fol lows:  
N j  
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Substituting Eq. 4.7 and Eq. 4.8 into Eq. 4.5 and Eq. 4.6 , respectively, 

one sees that S (t,:) and Sf(t,F) have the following properties: 
Nj 

- - - 
,t) = 0 , S (t,t) > 0 for t < tNj , N = l,--*,N , (4.9) 

'N j(% j N j 

s (t ,TI = o sf(t2t> > o for t < tf . (4.10) 
f f  

th th 
Thus, S .(t,F) is the N -switching function for the j -component 

of the control function, and 

That is, when S 

and when S (t ,c) = 0 , then u(t) = 0 , t 2 tf . Note that since 

SNj(t,t) , 
surface defined by the neighboring control law is simply a linear 

approximation of the nominal switching surface at the nominal switch 

points. 

NJ 
S (t,;) is the final-time switching function. f - 

(tNj,t) = 0 , then u.(t) = u.(t-.)-A ,t 2 tNj , N j J J NJ N j  

f f  - - 
N = l , * * * ,  N , is linear in the state, x(t) , the switching 

The switching functions, defined by Eq. 4.7 and Eq. 4.8 , are 

utilized in Section 4.4 to mechanize the neighboring control law. 

They are, however, a function of the nominal time as well as of the 

neighboring state, x(t)  . Thus, a technique for determining an appro- 

priate nominal time must first be specified. This is the subject of the 

next section. 

40 



4.2 Choice of Nominal Time 

t h  - 
The choice  of t i s  somewhat a r b i t r a r y .  When c a l c u l a t i n g  the  N - 

- 
switch t i m e ,  t h e  only r e s t r i c t i o n  upon t h i s  choice i s  t h a t  t l i e  i n  

t .] . The b e s t  technique f o r  choosing t i s ,  the  i n t e r v a l  

i n  gene ra l ,  dependent upon t h e  p a r t i c u l a r  a p p l i c a t i o n  of i n t e r e s t .  The 

concept of "time-to-go" i s  used t o  determine an appropr i a t e  t i n  t h i s  

- - 
(-bl) j '  N J  

- 

s tudy 

This  concept may be appl ied  by two d i f f e r e n t  techniques: 
- - - 

Choose ( t ( N + l ) j >  t NJ .] such t h a t  t he  time-to-go u n t i l  

t h e  f i n a l  t i m e  i s  the  same f o r  both neighboring and nominal paths .  

That i s ,  choose t such t h a t  
- 

where tf 
i s  t h e  p red ic t ed  f i n a l  time f o r  the  neighboring path.  

- - - 
2) Choose t 8 ( t ( N + l ) j  Y t ~ j I  such t h a t  the  time-to-go 

u n t i l  t h e  next  switch time i s  the  same f o r  both the  neighboring and 
- 

nominal pa ths .  That i s ,  choose t such t h a t  

- - - - - 
t - t = t - t , t(N+l)j< t 5 tNj , t(wl)j< t 5 tNj , (4.12) 

N j  N j  

where t i s  the  p red ic t ed  va lue  of t h e  next switch time f o r  the 

neighboring path.  
N j  

Two c l a s s e s  of problems should be considered:  f i xed  te rmina l -  

t i m e  and f r e e  terminal- t ime opt imiaa t ion  problems. A b a s i c  d i s t i n c t i o n  

between these  two c l a s s e s  of problems i s  the  following: The opt imal  

switching s u r f a c e ,  i n  s t a t e - s p a c e ,  f o r  a f i x e d  terminal- t ime problen  

is  a func t ion  of t h e  i n i t i a l  s ta te  of t he  system, whereas the  optimal 
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switching surface for a free terminal-time problem is invariant to 

the initial state of the system. 

It is conjectured that the first of the above techniques for 
- 

determining t is most appropriate for fixed terminal-time problems, 

whereas the second technique is most appropriate for free terminal- 

time problems, When the switching surfaces for the neighboring and 

nominal trajectories are identical, as is the case for free terminal- 

time problems, it seems reasonable to expect that the neighboring and 

nominal trajectories will possess similar characteristics with respect 

to their switching surface. Choosing t by the second technique 
- 

described above insures that this is the case. When the switching 

surfaces for the neighboring and nominal trajectories are different, 

as is the case for fixed terminal-time problems, a similarity between 

the two trajectories, with respect to their respective switching sur- 

faces, should not be expected. For fixed terminal-time problems, there- 

fore, it seems more reasonable to choose t by the first technique 
- 

described above. 

It is emphasized that the above discussion is merely conjectural. 

The ultimate test for determining the most appropriate technique for 

choosing t 
- 

is a simulation of the particular problem of interest. 

For the example problems considered in Chapter V, the conjecture proved 

to be correct. Hence, the procedure for determining t described above 
- 

will be adopted in the remainder of this study. 
- 

Finally, it should be noted that choosing t by the first tech- 

nique is particularly appealing when the terminal time is fixed, since 

estimation of the final time, tf , is no longer necessary. Also, for 

free terminal-time problems, the second technique for determining t 
- 
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i s  more appeal ing s i n c e  one only needs t o  e s t ima te  t h e  next  switch time, 

t , i n s t ead  of t he  f i n a l  t ime, 
t f  * N j  

4 . 3  Choice of Mominal Path 

The proper choice  of the  nominal path i s  e s s e n t i a l  i n  order  t o  

in su re  the  success  of t he  neighboring c o n t r o l  scheme. 

t h e  terms h igher  than  second-order,  i n  t h e  expansion of t he  performance 

index,  were dropped. It should be expected, t h e r e f o r e ,  t h a t  t he  neigh-  

bor ing  c o n t r o l  l a w  i s  nea r ly  optimal only when these  higher-order  terms 

are s m a l l  compared t o  the  second-order terms. Hence, when us ing  the  

neighboring c o n t r o l  scheme, t h e  pe r tu rba t ions  i n  the  s t a t e  should be 

kept  as s m a l l  as poss ib l e .  

In  Chapter 111, 

To accomplish t h i s ,  one should choose a nominal t r a j e c t o r y  which 

l i e s  w i t h i n  t h e  reg ion  of expected i n i t i a l  s t a t e s  of t h e  system. This  

i s  the  primary gu ide l ine  f o r  choosing a nominal t r a j e c t o r y .  I f  t he  

reg ion  of expected i n i t i a l  s ta tes  is  l a r g e ,  i t  would probably be necess-  

a r y  t o  genera te  mul t ip l e  nominal t r a j e c t o r i e s ,  and corresponding con- 

t r o l  l aws ,  each assigned t o  c o n t r o l  a p a r t i c u l a r  reg ion  i n  s t a t e - space .  

The s i z e  of t hese  r eg ions ,  and the  number of nominal t r a j e c t o r i e s  r equ i r ed ,  

would depend upon t h e  p a r t i c u l a r  a p p l i c a t i o n  , and would have t o  be d e t e r -  

mined by a problem simulat ion.  

I n  a d d i t i o n  t o  these  cons ide ra t ions ,  t he  nominal t r a j e c t o r y  must 

The f i r s t  was mentioned i n  Sec t ion  s a t i s f y  two f u r t h e r  requirements.  

4.1 e The number of switch times along t h e  nominal path must be a t  

l e a s t  as l a r g e  as the  maximum number of switch t i m e s  expected along 

a neighboring path.  

s imula t ion  i n  order  t o  determine an appropr i a t e  va lue  f o r  N . 
In  most a p p l i c a t i o n s ,  one would have t o  perform a 

- 

The second requirement i s  based upon an assumption made i n  the  

d e r i v a t i o n  of t he  neighboring c o n t r o l  law. In  Sec t ion  3 . 2 ,  i t  was 
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- -  
assumed that u(tf) = u(tf) 

and nominal switch times is identical, satisfaction of this condition 

insures that the feedback gains, utilized along a given segment of the 

neighboring trajectory, are associated with the corresponding segment 

of the nominal trajectory. 

generating multiple nominal trajectories, each having a final control 

vector matching that of the expected initial states of the system, 

The final control vector, 

the correct nominal trajectory and control law, can then be determined 

from a simple algorithm which utilizes the open-loop neighboring control 

law derived in Chapter 111. This algorithm, along with a complete de- 

scription of the mechanization of the neighboring feedback control law, 

is presented in the next section. 

Since the number of remaining neighboring 

This requirement can be satisfied by again 

u(tf> , for a given initial state, and hence 

4.4 Neighboring Feedback Control Algorithm 

In this section, an algorithm is presented which mechanizes the 

neighboring control law derived in Chapter 111. Initially, it is 

assumed that the terminal time is free. The algorithm for free terminal 

time problems is modified to handle fixed terminal-time problems at the 

end of this section. It is assumed that N 5 N , where an appropriate 
- 

- 
N has been determined by an analysis of the problem and system dynamics. 

The number of switch times, N , the initial control vector, u(t,> , 

and the correct nominal path are assumed to be unknown. If any of this 

information is known, for a particular application, the appropriate steps 

in the algorithm are deleted. 

The first phase of the mechanization involves the determination of 

the number of switch times, the initial control vector, and the correct 
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feedback gains .  This  i s  e s s e n t i a l l y  an open-loop procedure and r equ i r e s  

a f i n i t e  amount of computation time. I n  the  d e s c r i p t i o n  below, i t  i s  

assumed t h a t  t hese  computations a r e  performed i n  n e g l i g i b l e  time. In  

p r a c t i c e ,  one would measure t h e  p re sen t  i n i t i a l  s t a t e ,  ~ ( t , )  , and 

is  the  est imated p r e d i c t  the  f u t u r e  s t a t e ,  

computation time r equ i r ed  f o r  t h i s  phase of t h e  mechanization. All 

c a l c u l a t i o n s  would then  be based upon x ( t o  + tc) ins t ead  of x ( t o )  e 

The magnitude o f  

reduces i n  s i z e  when information regard ing  N , u(t,) , or  u ( t f )  , 

i s  i s  a v a i l a b l e .  For the  a p p l i c a t i o n s  considered i n  Chapter V , 

very s m a l l  compared t o  t h e  t o t a l  ope ra t ing  t i m e  of t h e  con t ro l  scheme. 

Hence, a t  l eas t  f o r  t he  problems considered i n  t h i s  s tudy ,  t h e  open- 

loop phase of t h e  c o n t r o l  l a w  mechanization does not  s e r i o u s l y  i m p a i r  

the  o v e r a l l  performance of t he  neighboring c o n t r o l  scheme. 

tC 
x ( tO + tc) , where 

is dependent upon t h e  p a r t i c u l a r  app l i ca t ion ,  and 
t C  

t C  

The fol lowing d a t a  are p reca lcu la t ed  and s to red  

f o r  use  i n  t h e  open-loop phase of t he  mechanization: 

neighboring s t a t e ,  x ( t o )  ; the  sets of ga ins ,  G 

f o r  each nominal t r a j e c t o r y ;  t he  switch-time vec to r ,  

- 
i 

- - 
t i m e ,  tf , t he  c o n t r o l  level changes, A , u  , i = 

1 . j  

i n  the  computer 

t he  i n i t 2 a l  - 

- 
ts , t he  f i n a l  

- 
l,oo*, N ,  and the  

- -  
f i n a l  c o n t r o l  v e c t o r ,  u ( t f )  

h i s t o r y ,  

@(tf , t )  , to< t <_ tf , f o r  each nominal t r a j ec to ry .*  It is  assumed t h a t  t h e  

number of a v a i l a b l e  nominal t r a j e c t o r i e s  i s  s u f f i c i e n t  t o  i n s u r e  t h a t  

, f o r  each nominal t r a j e c t o r y  ; the  s t a t e  
-- - -  
x ( t )  , to< t <, t , and the  s t a t e  t r a n s i t i o n  ma t r ix  h i s t o r y ,  

f - - -  - -  

- -  * 
Ins t ead  of s t o r i n g  x ( t )  and O('E,,'E) , 'E 0- < t < Ff , i t  i s  usua l ly  

This w a s  t he  
more expedient  t o  integrate- the d e f i n i n g  dynamical - equat ions t o  d e t e r -  
mine a d e s i r e d  va lue  of x ( t )  

procedure which w a s  followed i n  t h e  examples of Chapter V. 

o r  @(tf , t)  , t 8 [ to , t f ]  . 
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at least one nominal trajectory has a final control vector equal to 

the optimal final control vector for the neighboring initial state. 

The open-loop phase of the neighboring control law mechanization, 

for free terminal-time problems, is now stated as follows: 

Open-Loop Phase of Mechanization for Free Terminal-Time Problems 

0 ’  0 

- -  - 
t = t , and N’ = N , where N’ is an 

integer constant. Choose, arbitrarily, one of the available nom- 

inal trajectories which lies in the region surrounding 

GN. and g , associated with this nominal tra- Using the gains, 

jectory calculate t and t using Eq. 3.66 and Eq. 3 . 6 7 ,  re- 

Step 1. Set t = t 

x(to) . 
- - 

0 

S f 

spectively 

( 4 . 1 3 )  

- - - -  
= to + t - t - go@(tf,t)[x(tO) - (4.14) tf f 

- 
Step 2. If tN‘j , as determined by Eq. 4.13 with N’ = N , 

- 
is negative, set N’ = N - 1 and repeat Step 1 using the same nom- 

inal trajectory (i.e. use G - , and the corresponding g 

to calculate t and tf )e Continue in this manner until t > 0 

- - 
0 ’  (N- 1) 

S N‘j 

.< 0 for some integer N’I N . 
- (dl) J 

and t 

Step 3 .  Choose t such that time-to-go until the next switch 

time is the same for both neighboring and nominal trajectories 

(see Eq. 4 . 1 2 ) :  

- 
t = to + tN’j - tNpj * ( 4 . 1 5 )  
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. Con- tN’ j 
Then, s u b s t i t u t i n g  Eq. 4.15 i n t o  Eq. 4.13, r e c a l c u l a t e  

t i n u e  t h i s  procedure,  us ing  Eq. 4.15 t o  determine t and then r e -  
- 

, u n t i l  ( t  ,.) i s ,  t o  wi th in  any des i r ed  tN’ j N J New 
c a l c u l a t i n g  

numerical  accuracy, equal  t o  (tN.j)old Then compute t 

If (N’f l )  j 

cont inue t h e  c a l c u l a t i o n .  I f ,  dur ing  t h i s  c a l c u l a t i o n ,  

nega t ive ,  r e v a l u a t e  N’ t o  be N’= (N’)old- 1 ,and then  cont inue 

t h e  ca l cu la t ion .*  

(N’t-1) j e 

> 0 , r e v a l u a t e  N’ t o  be N‘ = (N’)old+ 1 , and then 

becomes tN’ j 

- 
Step  4. Calcu la t e  ts and t by s u b s t i t u t i n g  t and N‘ , f 

determined i n  S tep  3 ,  i n t o  Eq. 4.13 and Eq. 4.14. Evaluate  N t o  

be the  number of components of which l i e  i n  the  i n t e r v a l  

[to,tf] e The neighboring i n i t i a l  c o n t r o l  func t ion ,  u ( t o )  , i s  
- - 

given by uO(T) ,  where u O ( ” )  i s  t h e  c o n t r o l  func t ion  f o r  t he  

a r b i t r a r i l y  chosen nominal t r a j e c t o r y .  The neighboring f i n a l  c o n t r o l  
- -  - #  

func t ion ,  u ( t f )  , i s  determined from u ’ ( t f )  and A.u , i = 1, 
i j  

* e - ,  N’ - N , by repea ted  use of Eq. 3.6$* 

Step  5.  Choose a new nominal t r a j e c t o r y ,  wi th  f i n a l  con- 
- -  - -  

t r o l  func t ion  u ( t f )  , such t h a t  u ( t  )= u ( t f )  . f 

Step  6.  S e t  N’= N and r epea t  S tep  3 ,  us ing  the  ga ins  

a s soc ia t ed  wi th  the  new nominal t r a j e c t o r y .  Then check t o  s e e  i f  

I f ,  i n  f a c t ,  t hese  i n e q u a l i t i e s  t . > o ,  t 

are s a t i s f i e d ,  i t  i s  concluded t h a t  N i s  the  number of nefghboring 

switch t imes,  and t h a t  the  g a i n s ,  G.  and g i l , * - * , N ,  

a s s o c i a t e d  wi th  the  new nominal t r a j e c t o r y ,  a r e  t h e  

.< 0 , and t .< tf . 
(NfU J 1 3  NJ 

- - 
1 0 ’  

* 
For the  examples considered i n  Chapter V, convergence t o  t N‘j and 

On t he  average, only 5 i t e r a t i o n s  were requi red ,  

I f  N’ = N , then u ( t  ) = u’(t  ) , and t h e  chosen nominal path i s  

N’ w a s  always accomplished i n  l e s s  than 11 i t e r a t i o n s  wi th  
I (tNlj)New-(tN.j)oldl<- .02 

appropr i a t e  f o r  t h e  given i n i t i a l  sgate. 

- -  ** 
f 
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feedback gains appropriate for initial state x(t ). If, however, 

these inequalities are not satisfied, one simply revaluates N and/ 
0 

or chooses-a new nominal trajectory by repeating Steps 3-5.6; 

Finally, calculate t and t using N' = N and the nominal time, 
S f' - 

t, determined in Step 3.  This completes the open-loop phase of 

the neighboring control law mechanization. 

The number of neighboring switch times,N, the appropriate set 
- 

of feedback gains, G. and i = l,..., N, the initial control vec- 

tor,u(tO), and the step changes in the control function, A.u 

i = l,"", N, are now considered to be prescribed, having been deter- 

1 0, - 
, 

1.j 

% > 
mined by the above open-loop algorithm. 

and the final. time, tf , calculated in Step 6, define the open-loop 

control law for the initial state x(t ). This is true since it was 

assumed that t = t in all of the above computations. Knowledge of the 0 

open-loop control law is utilized in the feedback mechanization of the 

The switch-time vector, 

0 

neighboring control law, to be described below. 
- -  

For free final-tine problems, t = t at the Nth-neighboring 
Nj - -  

switch time (see Eq. 4.12), and t = t at the neighboring final time. 

The N switching functions for the N neighboring switch times, and the 

final-time switching function, may thus be written (Eq. 4.7 and Eq.4.8): 

f 

(4.16) 
cont. 

* 
This calculation was not performed in the example problems of 

Chapter V since the inequalities were always satisfied. 
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(4.16) 

th Hence, when S, ,(t,t. .) = 0 the j -component of the neighboring 
1 J  1 J  - 

control function switches discontinuously, and when 

the neighboring control function switches off. 

Sf(t,tf) = 0 , 

Since the neighboring control law will be applied to states which 

are a finite distance from the nominal trajectory, the mechanization 

of the control law must allow for a possible reordering of the switch 

times.* That is, for two control components, u.(*) and u ( 0 )  

J j‘ - 
j # j’ , with nominal switch times related by t .< 7 , i > i ‘  , ij i’j’ 

the mechanization must all0w for the possibility that the neighboring 

switch times are related by t x t i > i’ (see Fig. 4.1) . 
i’j ij ’ 

Allowing for this possibility, the feedback phase of the neigh- 

boring control law mechanization is described as follows: 

Feedback Mechanization for Free Terminal-Time Problems 
- - - Monitor the functions Sil(tytil) , Si2(tyti2) ... Y s. (tytim) Y 

im - 
i 6 [ l,***,N] , where each S. .(t,t. .) is the switching function 

for the next switch time 
1.J 1.J 

for the jth-component of the control 

function. When any one of these switching functions becomes 
- 

zero, say SiejO(tltiejO) , then the ieth-neighboring switch time, 

i’j‘ ’ ~ , i’e [l,***,N] is determined, and u.,(t) , t 2 t 
ti*j J 

* 
An example, in which a reordering of the switch times occurs :s 

presented in Section 5 . 3  e 
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becomes (see Eq. 3 . 6 )  

(4.18) 

- - 
> replace s ... (t,t *..I by Sillj.(t,tillj.) , i‘j” i J  i J  

After time t 

ill C i‘ , in the sequence of switching functions being monitored, 

where Sil,j.(t,ti,ljO) is the switching function for the next switch 

time, after t 

After all N switchings have occurred, monitor Sf(t,tf) a When 

S (t,i ) f f 

- 

, for the jcth-canponent of the control function. 
- i’j‘ 

becomes zero, set u(-) = 0 , thus terminating the control 

scheme . 
This phase of the mechanization of the neighboring control law 

- 
results in a feedback control scheme since S. .(t,t. .) , i = l,***,N , 

and Sf(t,tf) are functions, only, of the state, x(t )  , and prescribed 

quantities associated with the nominal trajectory. Caution must be 

1 J  1.J - 

used when implementing this control scheme, however, since the switching 

functions are, in general, not monotonic functions of real time t . That 
is, as t increases from to , the switching functions may pass thru zero 

several times before actual switching is supposed to occur. From Eq. 

4.16 , S. .(t,t .) 

tL tij a This restriction on t is a consequence of the assumption 

that the state perturbations are infinitesimal. Since finite state 

t(i+l> j < is a valid switching function only when 
1 3  iJ 

perturbations will be allowed, t need not satisfy this inequality. If, 

however, t is far removed from the time interval it(i+1>j , t  ij I ,  

one can no longer expect that 

a switching function (Eq. 4.9). 

S. .(t,t. .) 
1 3  LJ 

will possess the properties of 

50 



This problem is circumvented by utilizing the open-loop switch- 

$ calculated in the open-loop phase of the mechanization. tS 
time vector, 

This vector gives the approximate switch times for the nelghboring 

control law, and will usually indicate the actual ordering of the 

neighboring switch times. Provided that S .  .(t,tij) i= 1 ,***  , N , are 

well behaved functions (which was found to be the case for the problems 

- 
1 J  

considered in Chapter V), they will satisfy the properties given in 

Eq. 4.9 when t is "reasonably close" to t Hence, by monitoring 

S. .(t,t. .), i = l,"", N, only after t is "reasonably close" to the 
1J 1 J  

open-loop switch time, t ij ij 1- j  

the switching function for the switch time t Defining "reasonably 

close" must be done by a problem simulation. At least for the problems 

ij' - 

, one insures that S (t9t. .) is, in fact, 

ij' 

discussed in Chapter V, it was found that one could safely monitor 
- 

S..(t,t .),i = l,..', N, well before the associated open-loop switch 

times. This completes the description of the feedback mechanization 
1 J  iJ 

of the neighboring control law for free terminal-time problems. A 

block diagram of this mechanization is shown in Fig. 4.2.  

The control law mechanization for fixed terminal-time problems 

differs from that for free terminal-time problems in the choice of the 
- - 

nominal time. Since t = tf, Eq. 4.11 indicates that t = t is the f 

appropriate choice for the nominal time. The resulting modifications 

in the above mechanization, made necessary in order to handle fixed 

terminal-time problems, are now presented: 

Open-Loop Phase of Mechanization for Fixed Terminal-Time Problems 

This phase of the mechanization is identical to that for free 

terminal-time problems when the following modifications are made: 
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CONTROL LOGIC 

SWITCHING FUNCTIONS 

Figure 4.2. Feedback Mechanization of Neighboring Optimal Control Law 
for Free Terminal-Time Problems. 
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- - 
1. Since t = t and hence t = t, it follows that t = f f  - -  

t = t = t during this phase of the mechanization. Thus, Eq. 
0 0 

4.13 is modified to become 

(4.13 ') 

and Eq. 4.14 is omitted. 
- 

2. Since t = t, Step 3 is omitted. 
- 

Since no iterative technique is required to calculate t it is 

seen that this phase of the mechanization is simpler than that for 

free terminal-time problems. Consequently, the open-loop computation 

time is considerably smaller for this class of problems. 

The closed-loop phase of the mechanization is described as 

tc 

follows : 

Feedback Mechanization for Fixed Terminal-Time Problems 

The feedback mechanization for fixed terminal-time problems is 

identical to that for free terminal-time problems when the following 

two modifications are made: 
- 

1. Since t = t, the switching functions (Eq. 4.16) are re- 

defined to be (see Eq. 4.7) 

(4.16') 

- 
and, since t = tf the final-time switching function (Eq. 4.17) 

f 

is omitted. 
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2. From Eq. 4,16',  S. .(t,t) is the switching function for 
1 J  - 

If th 
ij the i -neighboring switch time, t only if t 5 t 

t >.tij Eq. 4.16' is modified to become 
ij' 

ij 

(4.1611) 

< t < t  , t > t  
(i+l) j - ij ij a 

t 

- - -  - 
Hence, in the time interval (t t..] , x(t) is equated to x(t..) 

since only values of x(t), t <_ t , are allowed in Eq. 4.7 . 
This completes the description of the neighboring feedback control 

scheme for fixed terminal-time problems. 

mechanization is shown in Fig. 4.3. 

ij' LJ 1 J  - -  - - 
ij 

A block diagram of this 

Note that Eq. 4.16' and Eq. 4.1611 do, in fact, result in a feed- 

back mechanization of the neighboring control law since S (t,t), 

i = 1, ,N, are functions of the current state, x(t). The neighboring 

feedback control law mechanization described in this chapter is summar- 

ized, for convenience, in Section 4.5 e 

ij 
Jr ... 

4.5 Summary of Control Law Mechanization 

The mechanization of the neighboring control law, described in 

this chapter, is summarized in this section. The modifications in the 

mechanization, made necessary when the terminal time is fixed, are 

- * 
McNeal's mechanization is open-loop-when t ,>tij (see [ 6 ] ,  Eq. 5.11). 

iJ - 
He replaces x(t) with x ( t ,  .) in the switching function when t .> tije 

1.J iJ 
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STATE, Z ( t )  
STORAGE 

SWITCHING FUNCTIONS 

I 1 

CONTROL ACTION 
CONTROL- LEVEL 

STORAGE 

I 

PHYS I CAL 
SYSTEM - 

i ( t  1 = f [ x (t 1 ,u (111 
b 

Figure 4 . 3 .  Feedback Mechanization of Neighboring Optimal Control Law 
for Fixed Terminal-Time Problems. 
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indicated. The neighboring control law mechanization is summarized 

as follows: 

Summary of Preliminary Computations 

1. Determine, by problem simulation and/or analysis, the number 
- 

of nominal switch times, N , such that for each neighboring initial 

state, x(to), of interest, the number of neighboring switch times, N , 

satisfies the inequality N <_ 6 . 
2. Generate a sufficient number of nominal trajectories (see 

Section 3. l), each having control discontinuities, such that each 

x(t ) of interest lies near one of the nominal trajectories, and such 

that the final control vector, u(tf) , of that nominal trajectory, is 

equal to the final control vector, u(tf), associated with the optimal 

neighboring trajectory f o r  x(tO) . 

0 - -  

3. For each nominal trajectory, calculate and store the folzowing 

data for use in the control law mechanization: 
- - - 

a. The gains, Gi and go , i = O , * * * ,  N, (see Eq. 3.59- 

Eq. 3.60). 
- 

b. The nominal switch-time vector, (see Eq. 3.63). 

c. 

d. The control level changes, A.u , i = l9***,N, (see Eq. 3.6). 

e. 

- 
The nominal final time, tf. 

- - 
- -  1.j 

The nominal final control vector, u(tf)' 
- -  - - -  

f. The nominal state history, x(t), to 5 t <, tf , or an 

integration routine (Eq. 2.8) which determines 
- -  - - -  
x(t), t e [tO,tf1 0 

- - -  - -  
g, The state transition matrix history, @(tf,t), to 5 t 5 tf , 

or an integration routine (Eq. 3.21) which determines 
- - -  

@(tf,% t e [tO'tf1" 
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Summary of Open-Loop Phase of Control Law Mechanization 
- -  - -  

(Set t = t - t = t when the terminal 
e 0- 0 

4. Set t = to and t = 

- - - 
and go , i = 1;*-, N, Gi time is fixed.) Use the gains, 

associated with an arbitrary nominal trajectory, to determine N' such 

e 0 (Step 1 and Step 2 in Section 4,4) (N'+1) j that tN,j> 0 and t 

(When the terminal time is fixed, replace Eq. 4.13 by Eq. 4.13' and 

neglect Eq. 4.14;)  
- 

5. Determine t such that time-to-go until the next switch time 

is the same for both neighboring and nominal trajectories, revaluating 

N' whenever necessary (Step 3 in Section 4.4) . (When the terminal 

time is fixed, omit this step.) 
- 

6 .  Using the current values of t and N' , evaluate N, u(to) , 

and u(tf) , associated with neighboring initial state x(to) (Step 4 

in Section 4.4) e 

- -  
7. Choose a new nominal trajectory such that u(tf) = u(tf) . 

- 
Then recompute t (only if the terminal time is free) and check to see 

if t > o ,  
Nj 

t .< t 1J f If these inequalities are not 

satisfied, revaluate N and/or choose a new nominal trajectory. Then 

recompute t 
- 

and again check to see if the above inequalities are 

satisfied (Step 5 and Step 6 in Section 4.4) e 

Summary of Neighboring Feedback Control Law Mechanization 

8a. For free terminal-time problems, monitor. the functions (see 
- 

Eq. 4.16) Sij(t,t. .) , 

S. .(t,t. .) 
.1-J 1-J 

j = 1 , * * * ,  m ; i e [ l,'"",N], where each 
1-J 

is the switching function for the next switch time for the 

th j -component of the control function. No individual switching function 

should be monitored until t is :treasonably closet! to the corresponding 

open-loop switch time. When any one of these switching functions becomes 
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- 
zero, say S (t,tiej.) , uj.(0) undergoes a discontinuity and is 

i’j’ - 
given by Eq. 4.18 . Then replace S .’( t,t #)  by the next switch- i J  i’ j  

ing function for u ’ ( 0 )  in the sequence of monitored switching functions. 
j 

8b. For fixed terminal-time problems, monitor the functions (see 

Eq. 4.16‘ ) S. .(t,t) , j = l , O * * s  m; i 8 [l,.4-,N]3 where each 

S .(t3t) is the switching function for the next switch time for the 

j -component of the control function. Then proceed as in 8a. If 

1 J  

i J  
th 

> t , replace S. .(t,t) in the monitored sequence, defined in Eq. 
tij i j  1 J  

4.16’ , with S .(t,t) , defined in Eq. 4.16” e 

iJ - 
9. When all N switchings have occurred, monitor Sf(t,tf) , 

- 
defined in Eq. 4.17 , and set u(e) = 0 when Sf(t,tf) = 0 . 

- 
(For fixed terminal-time problems, set u(*) = 0 when t = tf .) 

The neighboring control scheme summarized above is utilized, in the 

next chapter, to solve one minimum-fuel and two minimum-time optimization 

prob lems . 
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CHAPTER V 

APPLICATION TO CONTROL PROBLEMS 

I n  t h i s  chap te r ,  the  neighboring optimal feedback c o n t r o l  l a w  

developed i n  t h e  previous chapters  i s  u t i l i z e d  t o  so lve  t h r e e  con t ro l  

problems. F i r s t ,  t h e  problem of minimum-fuel c o n t r o l ,  t o  t h e  o r i g i n ,  

of t h e  l / s  p l a n t  i s  considered. This problem is  solved a n a l y t i c a l l y  

and demonstrates t h e  c o n t r o l  l a w  mechanization f o r  f ixed  te rmina l -  

t i m e  problems. The second problem considered is  the  minimum-time 

c o n t r o l ,  t o  t h e  o r i g i n ,  of t he  l /s(s +1) p l a n t .  The opt imal  switching 

s u r f a c e  and t r a j e c t o r i e s  f o r  t h i s  problem are known [15] , and hence 

are compared t o  those  generated by the  neighboring c o n t r o l  scheme. 

Also ,  t h i s  problem demonstrates t h e  c o n t r o l  l a w  mechanization f o r  f r e e  

terminal- t ime problems. Both of t hese  problems involve scalar c o n t r o l  

of low-order systems. To demonstrate the  e f f e c t  of t h e  neighboring 

c o n t r o l  scheme upon high-order ,  mu l t i - i npu t  systems, t h e  minimum-time 

s a t e l l i t e  a t t i t u d e - a c q u i s i t i o n  problem i s  considered. The s imula t ion  

o f t h e  s a t e l l i t e  dynamics, and t h e  a s soc ia t ed  neighboring optimal feed-  

back c o n t r o l  l a w ,  w a s  performed i n  s i n g l e  p rec i s ion  on the  Stanford 

Univers i ty  IBM 360/67 d i g i t a l  computer. 

2 

2 

The r e s u l t s  presented i n  t h i s  chapter ,  f o r  these  t h r e e  c o n t r o l  

problems, demonstrate t h e  f e a s i b i l i t y  of a neighboring opt imal  c o n t r o l  

scheme, and lend credence t o  t h e  feedback mechanization of t h i s  c o n t r o l  

scheme, descr ibed  i n  Chapter IV.  I n  add i t ion ,  t hese  r e s u l t s  show the  

a c t i o n  of th'e neighboring c o n t r o l  scheme when appl ied  t o  states which 

are a s i g n i f i c a n t  d i s t a n c e  from the  nominal t r a j e c t o r y .  

59 



2 5.1 Minimum-Fuel Control of l/s Plant 

The problem considered in this section is the well-known problem 
2 of minimum-fuel control, to the origin, of the l/s plant. The system 

dynamics are given by 

10 ’ x,(t) = X2(t) , x (t ) = x 1 0  

X2(t) = u(t) 3 x2(to) = Xzo 2 

where the scalar control function is subject to the constraint 

The final time, tf is specified. The performance index is given by 

(5.3) 

By augmenting the state (Eq. 2.5) , the performance index may be 

written 

where 

x3(t) = lu(t)l Y x3(to) = 0 

The terminal constraints are written 

(5.5) 

It is known that at most two discontinuities in the optimal 
- 

control function can occur [16], and hence N = 2. It is assumed that 
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) , is such that the origin is reachable (xlo x20 the initial state, 

in time (t -t ) . 
valid when applied to states which are controllable in time (t -t ). 

Recall that the neighboring control scheme is only f 0  

f 0  - - 
Set to = to = 0.0 and t = tf = 3.0 * Choose the nominal, initial 

- -  
state to be = (1.25, 0.0) . The nominal, minimum-fuel tra- 

jectory for this initial state and terminal time is easily determined 

(see, for example, [16]) , and is shown in Fig. 5.1 . The nominal 

switch-time vector is found to be t 
minimum-fuel cost is 3 
u(to) = -1.0 and the final control function is u(tf) = -I- 1.0 . 

= (2.5, 0.5) , and the resulting 
S 

= 1.0 . The initial control function is 
- -  OP - -  

To determine the neighboring control law, the weighting matrix, 

W , is set equal to the second-order identity matrix, and the scalar 
gain, K , is allowed to become arbitrarily large (see Eq. 2.10). Since 

the system dynamics are linear, Eq. 3.57, in conjunction with Eq. 3.61, 

is used to calculate the feedback gains, G2 and 

as follows: 

- , which are given 1 

- [ 0.5 -1.25 0 . 0 1  
- 

1 

-0.5 0.25 0.0 G2 - 

- 
G1 = [ -0 .4  -0.8 0 .01  . 

(5.7) 

(5.8) 

Using these gains, the neighboring optimal feedback control scheme 

for fixed terminal-time problems was applied t o  the following initial 

states: 

Example I: x = 0 

61 



v 
W 

;3 

--? 
I 
I 

J W W W W  

I 
- i  + 

w 
0 

6 
a, 
rl 
P 
0 
$4 
I& 

$4 
0 

4-1 

rn 
a, 
.I4 

62 



2.00 

-. 25 
Example 11: x = 

0 

0.7 

0.0 
Example 111: x = 

0 

1.0 
Example I V :  x = 

0 -1.0 

In  each case ,  t he  open-loop phase of t h e  neighboring c o n t r o l  l a w  

mechanization ( s e e  Sec t ion  4 . 4 )  v e r i f i e d  t h a t  t h e  chosen nominal 

t r a j e c t o r y  i s ,  indeed, appropr i a t e  f o r  t hese  chosen i n i t i a l  s t a t e s .  

The neighboring opt imal  t r a j e c t o r i e s ,  f o r  each of t hese  i n i t i a l  s t a t e s ,  

a r e  shown i n  Fig. 5.1 and are s p e c i f i e d  by the  number of neighboring 

swi tch  t imes,  t h e  neighboring switch-t ime veceor ,  t he  i n i t i a l  and f i n a l  

c o n t r o l  func t ions ,  and t h e  f i n a l  s ta te ,  i n  Table 5.1 . 
Also included i n  Table 5 . 1  are t h e  opt imal  switch-time vec to r s ,  

- * 
t h e  neighboring and opt imal  c o s t s ,  J and 7 , and a measure 

( t s ) o p  OP 
of t h e  e f f e c t i v e n e s s  of t h e  neighboring c o n t r o l  scheme, 1 1  x ( t f ) l  I / 1 lx0l 1 , 
f o r  each neighboring t r a j e c t o r y .  The opt imal  switch times and optimal 

c o s t s  were obta ined  by so lv ing  Optimizat ion Problem I, f o r  each neigh- 

bor ing  i n i t i a l  s t a t e ,  by t h e  technique developed i n  [ 1 6 ] .  

J <, 3 
t he  t e rmina l  c o n s t r a i n t s ,  Eq. 5.6 , are not  s a t i s f i e d  exac t ly  by any 

Note t h a t  
- 

f o r  each of t he  example t r a j e c t o r i e s .  This i s  expected s i n c e  
OP 

- * 
The neighboring c o s t ,  J , l i s t e d  i n  Table 5 . 1  , is  the  nominal 

performance index (Eq. 5 . 4 )  evaluated along t h e  neighboring t r a j e c t o r y .  
Thus, n o n - s a t i s f a c t i o n  of t h e  te rmina l  c o n s t r a i n t s  i s  not  r e f l e c t e d  by 
t h e  magnitude of J. 
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of t h e  neighboring t r a j e c t o r i e s ,  and hence the  neighboring f u e l  r e -  

quirement should be l e s s  than  t h a t  r equ i r ed  t o  s a t i s f y  the  te rmina l  

c o n s t r a i n t s  exac t ly .  The d i s t a n c e  from x ( t )  t o  t he  o r i g i n  i s  def ined 

Hence, 1 Ix(t ,) l  I / I I xoI I 
o r i g i n ,  of t he  neighboring f i n a l  and i n i t i a l  s t a t e s .  This r a t i o  

i s  t h e  r a t i o  of t he  d i s t ances ,  from the  

reduces i n  magnitude when t h e  neighboring i n i t i a l  s t a t e s  approach t h e  

nominal t r a j e c t o r y ,  as ind ica t ed  by t h e  r e s u l t s  i n  Table 5 . 1  . 
I n  Fig. 5 . 1  , Tra jec to ry  I l i e s  c l o s e s t  t o  t he  nominal path and 

i s  very  nea r ly  optimal.  The remaining neighboring t r a j e c t o r i e s  a r e  a 

s i g n i f i c a n t  d i s t a n c e  from the  nominal path and are, t h e r e f o r e ,  sub- 

opt imal ,  as ind ica t ed  by t h e i r  non- sa t i s f ac t ion  of t h e  te rmina l  con- 

s t r a i n t s .  Since K was allowed t o  become a r b i t r a r i l y  l a r g e ,  t he  sab-  

op t ima l i ty  of t hese  t r a j e c t o r i e s  i s  due e n t i r e l y  t o  the  l a r g e  dev ia t ions  

i n  t h e  neighboring s t a t e s  away from t h e  nominal pa th ,  and not  due t o  

t h e  r e l a x a t i o n  of t h e  te rmina l  c o n s t r a i n t s ,  requi red  i n  order  t o  ob ta in  

t h e  neighboring feedback c o n t r o l  law ( s e e  Sec t ion  2 . 3 ) .  

When so lv ing  Example I V Y  t h e  open-loop phase of the  neighboring 

c o n t r o l  l a w  mechanization d i c t a t e d  t h a t  N = 1 and u ( t O )  = 0 . 
means t h a t  t he  minimum-fuel t r a j e c t o r y ,  t o  t h e  o r i g i n ,  r equ i r e s  time 

tf <, tf  = 3 . 0  . Hence, t h e  c a l c u l a t i o n  of t h i s  t r a j e c t o r y  becomes a 

f r e e  terminal- t ime problem, s u b j e c t  t o  the  c o n s t r a i n t  t <, tf . The 

feedback g a i n s ,  M and G1 , assoc ia t ed  wi th  f r e e  terminal- t ime t r a -  

j e c t o r i e s ,  a r e  given by (Eq. 3.32  and Eq. 3.59)  

This 

- 
- 

- - 
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1.0 

0.0 

(5.10) 

(5.11) 

These gains were used, in con,mct,on with the free term,aal-time 

neighboring control law mechanization, to generate Trajectory IV in 

Fig. 5.1 e 

- 
The neighboring final time was calculated to be t - 1.625 < tf. f- 

The optimal final time for this example is (t ) = 1.50 e 

f OP - - 
11 > 5 1  for  Finally, note that t21 > t21 for Trajectory I1 and t 

Trajectory 111. Hence, the switching function defined by Eq. 4.1611 

was utilized to calculate these particular switch times. 

2 5.2 Minimum-Time Control of l / s ( s  +1) Plant 

A problem considered by Fliigge-Lotz and Mih Yin [15] is discussed 

in this section, namely, the minimum-settling-time problem for the 

l /s (s  +1) plant. 
2 * 

The system dynamics are given by 

x,(t) = - x p  + u(t) Y X2(t0> = Xzo 
9 

where the scalar control function is subject to the constraint 

(5.12) 

(5.13) 

~~~ - ~~ ~ ~ * Eq. 5.12 is the normal form of the state equations for the 
I/s(s~+I) plant (see[~fjl, pg. 35). 
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The performance index is 

J = t  - t  f 0 .  (5.14) 

By augmenting the state (Eq. 2.5) , the performance index may be written 

where 

x p  = 1 , X4(t0) = 0 . 

The terminal constraints for this problem are written 

0 

0 i 0 

I 

. 

(5.16) 

(5.17) 

- 
The number of nominal switch times is chosen to be N = 4. 

Neighboring initial states which are controllable, and which require 

no more than four switch times, are considered. 

and choose the nominal 

- 
Set to = t = 0.0 

0 - - - 
initial state to be (xl0, x20y x 30 ) = (-3.600, 

2.000, -3.665). The minimu?-time trajectory, to the origin, from this 

initial state is known (see [15] ,  Fig. 3.6) ,  and is shown in both Fig. 

5.2A and Fig. 5.2B . 
6.789, 2.077, 0.506) , and the nominal final time is t = 9.930. The 

nominal initial control function is u(t ) = +1.0 , and the nominal final 

control function is u(t ) = +1.0 . 

The nominal switch-time vector is t = (8.360, 
S - 

f - -  
0 - -  

f 

Again, as in the second-order example (Section 5.1) , set the 

weighting matrix, W, equal to the third-order identity matrix, and 

let the scalar gain, K, become arbitrarily large (see Eq. 2.10). The 
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XI 

Figure 5.2A. Neighboring Trajectories for Problem of Minimum-Time Con- 
trol of l /s (s2 3. 1) Plant: Example I and Example 11. 
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Figure 5.2B. Neighboring Trajectories for Problem of Minimum-Time Con- 
trol of l /s (s2 + 1) Plant: Example 111 and Example IV. 
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system dynamics (Eq. 5.12) a r e  l i n e a r ,  and hence Eq. 3.57, i n  conjunct ion 

wi th  Eq. 3.61, i s  aga in  used t o  c a l c u l a t e  t he  feedback ga ins ,  GN and 

go , N = l y e " " ,  4 These ga ins ,  along wi th  the  f ina l - t ime  feedback 

ga in ,  M (Eq. 3.32 o r  Eq. 3.60 wi th  N = 0) , a r e  given i n  Table 5 .2  . 
Using t h e  feedback ga ins  i n  Table 5.2 , t h e  neighboring opt imal  

- 

- 

- 

feedback c o n t r o l  scheme f o r  f r e e  terminal- t ime problems was appl ied  

t o  t h e  fol lowing i n i t i a l  s ta tes :  

Example 111: 

Example I V  : xo 

For each of t h e s e  i n i t i a l  s tates,  the  open-loop phase of t h e  neighboring 

c o n t r o l  scheme (see Sec t ion  4 . 4 )  deduced t h a t  u ( t f )  = +1.0, v e r i f y i n g  

t h a t  t h e  chosen nominal t r a j e c t o r y ,  wi th  

f o r  t hese  i n i t i a l  s t a t e s .  The neighboring t r a j e c t o r i e s  f o r  these  

states a r e  shown i n  Fig. 5.2 A and Fig.  5.2 B y  and a r e  s p e c i f i e d  i n  

- -  
u ( t f )  = +1.0 i s  appropr i a t e  

70 



Feedback G a i n  

N 

m 
b 
e 
r 

U 

0 
f 

S 

i 
t 
C 

h 

T 
i 
m 
e 

W 

S 

N = 4  

N = 3  

N = 2  

N =  1 

N = O  

0.250 0.0 0.0 
-0.125 -0.125 0.125 
-0.250 0.0 0.0 
0.125 -0.125 0.125 

0.0 0.0 

0.0 0.0 0.0 
0.25 

0.0 
0.0 0.0 

0.25 

E0.333 0.166 -0.166 0 . 0 3  

c o . 0  0.0 0.0 0.01 

11-0.5 0.5 0.5 0.01 

[-0.5 0.5 0.5 0.01 

[-0.5 0.5 0.5 0.01 

~ - ~ . 3 3 3  0.667 o.333 o . o ~  

[ 0.0 0.5 0.5 0.03 

Table 5.2. Neighboring Feedback Gains f o r  Problem of 

2 Minimum-Time Cont ro l  of l/s'(s + 1) Plant .  

Table 5.3 by t h e  i n i t i a l  and f i n a l  c o n t r o l  func t ion ,  the  number of switch 

t imes,  t he  switch-t ime vec to r ,  t he  f i n a l  t i m e ,  and the  f i n a l  s t a t e .  

I n  Fig.  5.2A, Tra jec to ry  I, with two switch t imes,  l i e s  q u i t e  

c l o s e  t o  the  nominal t r a j e c t o r y  and is  very nea r ly  opt imal ,  as i n d i -  

ca t ed  by x ( t f )  T ra j ec to ry  11, with t h r e e  

switch t imes,  l i e s  f a r t h e r  from t h e  nominal pa th ,  b u t  i s  s t i l l  reason-  

ab ly  c l o s e  t o  being optimal.  'Again, s i n c e  K w a s  allowed t o  become 

f o r  Example I i n  Table 5.3. 
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[“‘“““I 
0.506 

[ ;::;] 

0.0 0.0257 

Example 
I11 

Example 
I1 

Examp le 
IV 

Example Nominal Trajectory 

’ 0.0 3 . 0 1  

-3.5 

2.970 
3,190 

-0.175 xO Initial State, 

Initial Control 
Function, u(tO) -1.0 -1.0 +1.0 

I I Final Control 
Function, u(tf) 

+Is0 I +Ie0 

+1.0 +1.0 +1.0 

I 

l 2  4 Number of Switch 
Times, N 3 3 2 

- ;:q 
0.93 

[ :: q Switch-Time 
Vector , t 

f Final Time, t 8.260 8.110 5.200 9.930 4.030 

Final State, x(tf) 

0.0536 0.1678 0.2669 

Table 5.3. Data and Results for Problem of 

Minimum-Time Control of l/s(s2 4- 1) Plant. 
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a r b i t r a r i l y  l a r g e  when c a l c u l a t i n g  the  feedback ga ins  i n  Table 5 .2 ,  

t h e  sub-opt imal i ty  of t hese  t r a j e c t o r i e s ,  as w e l l  as of those i n  

Fig.  5.2B , i s  due e n t i r e l y  t o  t h e  f i n i t e  dev ia t ions  i n  the  neighboring 

s ta tes  away from t h e  nominal path.  

T ra j ec to ry  I11 and Tra j ec to ry  I V ,  i n  Fig. 5.2B, show the  a c t i o n  

of t h e  neighboring c o n t r o l  scheme when appl ied  t o  s t a t e s  which a r e  

f a r  from the  nominal path.  ( I x ( t f ) (  I / l lxol  I , given 

f o r  each neighboring t r a j e c t o r y  i n  Table 5.3,  t h e  degree of op t ima l i ty  

of t h e s e  t r a j e c t o r i e s  i s  s e r i o u s l y  reduced. Nonetheless, cons ider ing  

As i nd ica t ed  by 

t h e  magnitudes of t h e  dev ia t ions  i n  the  neighboring s t a t e s  away from 

t h e  nominal pa th ,  t h e  neighboring c o n t r o l  scheme performs reasonably 

w e l l ,  even though t h e  te rmina l  c o n s t r a i n t s  are not  s a t i s f i e d .  

I n  Fig. 5 . 3 ,  t h e  neighboring and t r u e  opt imal  t r a j e c t o r i e s  f o r  

Example I11 and Example I V  a r e  compared. 

f o r  t h e s e  i n i t i a l  s t a t e s  were determined by the  techniques descr ibed  

i n  [15] .  The opt imal  and neighboring switch times and f i n a l  t imes,  

f o r  t hese  example t r a j e c t o r i e s ,  a r e  compared i n  Table 5.4 . 

The opt imal  t r a j e c t o r i e s  

Example I11 Example I V  

Neighboring Switch-Time 

Ip t i m a  1 Switch - T i m e  
Vec t o r ,  ( t ) 

OP 

8.110 5.200 le ighb o r  ing  F i  na 1 

f 

Time , ( tf lMin 

T i m e ,  t 

7.500 5.410 )pt imal  F i n a l  

Table 5.4. Comparison of Neighboring and O p t i m a l  Switch 

Times and F i n a l  T i m e s  f o r  Example I11 and Example I V .  
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Figure 5.3. Neighboring and Optimal Trajectories for Problem of Min- 
imum-Time Control of l /s (s2 i- 1) Plant: Example 111 
and Example IV. 
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Finally, recall that the switching surface generated by the 

neighboring control scheme is, in a sense, a linear approximation of 

the nominal switching surface at the nominal switch points (see Sec- 

tion 4.1). The projection of the optimal, nominal switching curve, 

onto the x x -plane, is shown in Fig., 5.4 (see [15], Fig. 3 . 6 ) .  The 

projection of the optimal switching curve for the neighboring initial 

states of Example I11 and Example IV is also shown in Fig. 5.4 (see 

[15], Fig. 3 . 3 ) .  The irregularity of the optimal switching surface, 

and the geometric dissimilarity of the switching surface at the nominal 

1 2  

and neighboring optimal switch points, are indicated in Fig. 5.4 by 

these projections. Hence, for these example trajectories, one cannot 

expect that a linearization of the switching surface at the nominal 

switch points is a good approximation to the optimal switching surface 

at the neighboring switch points. It is therefore concluded that 
* 

this example problem is a severe test for the neighboring optimal control 

scheme developed in this paper. 

performance of the neighboring control scheme when applied to problems 

One shouad expect improvement in the 

with better behaved optimal switching surfaces. 

5 . 3  Minimum-Time Satellite Attitude-Acquisition Problem 

The problem considered in this section is the problem of minimum- 

time attitude control of an earth-orbiting satellite. It is assumed 

that the attitude of the satellite is controlled by three high-torque 

* 
It would be interesting to compare the numerical. results obtained 

here with those of Frederick [17] for the l / s ( s h l )  plant. 
linear and piecewise-linear switching functions for the quasi-minimum- 
time control of this plant. 

He designed 
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co ld  gas  j e t s  f i x e d  t o  the  s a t e l l i t e  and a l l i g n e d  with the  t h r e e  

p r i n c i p a l  axes of t h e  s a t e l l i t e .  

co ld  gas j e t s  i s  assumed t o  be l a r g e  compared t o  the  g rav i ty -g rad ien t  

2nd d i s tu rbance  torques a c t i n g  on the  vehic le .  The s a t e l l i t e  i s  assumed 

t o  be a r i g i d  body and the  e a r t h  i s  taken t o  be an i n e r t i a l l y  f ixed  po in t  

m a s s .  

The torque l e v e l  generated by the  

The problem considered here  i s  the  minimum-time a t t i t u d e - a c q u i s i t i o n  

problem. That i s ,  given an i n i t i a l  s ta te ,  xo , use the  neighboring 

opt imal  feedback c o n t r o l  scheme t o  acqu i r e  a des i r ed  s t a t e ,  xf , i n  

minimum time. The th ree -ax i s  Euler  angles ,  e i = 1,2,3, def ined  i n  

Appendix C(yaw, r o l l ,  and p i t c h  ang le s ,  r e s p e c t i v e l y ) ,  and the  asso-  

c i a t e d  i n e r t i a l  angular  v e l o c i t y  components, wi , i= 1,2,3, a r e  chosen 

t o  be the  s t a t e  v a r i a b l e s  f o r  t h i s  system. Hence, t h e  (6 x 1) s t a t e  

i ’  

* 

vec to r  i s  def ined  t o  be 

x ( t )  f (5.18) 

where 

are measured i n  r ad ians  per  second. 

u t i l i z e d  i n  the  s o l u t i o n  of t h i s  problem, t h e  s t a t e  must be measurable. 

e i ( t ) ,  i = 1,2,3, are measured i n  r ad ians ,  and w i ( t ) ,  i = 1,2,3, 

Since a feedback c o n t r o l  l a w  i s  

* 
The angular  v e l o c i t y  components, w,, i = 1,2,3, a r e  i n e r t i a l  under 

t h e  assumption t h a t  t h e  e a r t h  i s  i n e r t i k l l y  f ixed ,  
i n  Appendix C. 

This i s  made evident  
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A b r i e f  d i scuss ion  on p o s s i b l e  techniques f o r  measuring e . ( t )  and 

oi(t)  , i = 1,2 ,3 ,  is  presented  i n  Appendix D. 

1 

The dynamical and k inemat ica l  equat ions f o r  t h e  s a t e l l i t e  a r e  

d iscussed  i n  d e t a i l  i n  Appendix C. For s i m p l i c i t y ,  t h e  d i scuss ion  

he re  i s  l imi t ed  t o  s a t e l l i t e s  i n  c i r c u l a r  o r b i t  wi th  angular  v e l o c i t y  

r ( i . e .  0 = r i n  Eq. C.6 of Appendix C). Then, using Eq. 5.18 i n  Eq. 

C.4 and Eq. C.6 of Appendix C ,  the  s t a t e  dynamical equat ions a r e  w r i t t e n  

as fol lows:  

1 
x , ( t )  = - [x4( t )c3  - x5( t ) s3  + rc1s2] , x 1 0  ( t  ) = 810 ’ c2  

(5.19) 

where s = s i n ( x i ( t ) ) ,  i = 1 ,2 ,3 ,  and c = c o s ( x i ( t ) ) ,  i = 1,2,3. I n  

Eq. 5.19, t h e  c o n t r o l  vec to r  components, U i ( t ) ,  i = 1,2 ,3 ,  have t h e  

dimensions of r ad ians  per  second per  second (see  Eq. (2.3 i n  Appendix C).  

i i 

The p a r t i c u l a r  s a t e l l i t e ,  considered i n  t h i s  s tudy ,  i s  the  same 

as the  s a t e l l i t e  considered by Wolske [ 2  ] . The p r i n c i p a l  moments of 

i n e r t i a  (see Appendix C)are  g iven  by 

2 I1 = 800 s l u g - f t  , 
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2 I2 = 581 s l u g - f t  , 
(5.20) 

and t h e  r e s u l t i  

2 
I3 = 300 s l u g - f t  , 

g i n e r t i a  parameters (Eq. C.2 +I Appendix C) a r e  

kl  = -0.351 , 

k2 = 0.860 , (5.21) 

k3 = -0.730 e 

Also, from Wolske, B = f3 = 

2.2). 

0.206 rr/180.0 rad /sec2  (see  Eq. 1 -  2 - @ 3 - @ =  

That i s ,  t h e  c o n t r o l  vec to r  components must s a t i s f y  the  c o n s t r a i n t s  

0.206 r ad  
I U i ( t ) l  L B = m n  z 2  9 i = 1 ,2 ,3 ;  to 5 t 5 tf . 

The o r b i t a l  angular  v e l o c i t y ,  r , i s  chosen t o  be 

-3 rad  
s ec  r = 1.0583 x 10 - , 

(5.22) 

(5.23) 

which corresponds t o  a c i r c u l a r  o r b i t  wi th  an approximate per iod of 

99 minutes. 

The chosen c o n t r o l  o b j e c t i v e  i s  t o  g ive  t h e  s a t e l l i t e  zero  angu- 

lar  v e l o c i t y  and ze ro  angular  displacement r e l a t i v e  t o  the  o r b i t a l  

r e f e rence  axes ( s e e  Fig.  C . 1  and Fig.  C.2 i n  Appendix C).  That i s ,  

t h e  c o n t r o l  o b j e c t i v e  i s  t o  make t h e  s a t e l l i t e  ea r th -po in t ing ,  wi th  

one p r i n c i p a l  a x i s  of t h e  s a t e l l i t e  d i r e c t e d  toward t h e  e a r t h  and 

another  p r i n c i p a l  a x i s  d i r e c t e d  normal t o  the  o r b i t  plane.  

t h i s  o b j e c t i v e ,  t h e  te rmina l  c o n s t r a i n t s  a r e  w r i t t e n  as follows: 

To achieve 
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(5.24) 

Again, by augmenting the state (Eq. 2.5) , the performance index is 

writ ten 

where 

(5.26) 

A number of optimal, nominal trajectories were generated by inte- 

grating backwards, simultaneously, the adjoint and state equations 

for different values of the final adjoint vector. 

for the initial states of interest, only three nominal switch times 

were required, one for each component of the control vector. Thus, 

the number of nominal switch times was chosen to be = 3 . The nom- 

inal final control vector was chosen to be u(tf)= (+@ ,+@ , +p) . 
Therefore, only neighboring initial states for which u(tf) = (+By 

+p, +p) are considered in the examples of this section. 

inal, minimum-time trajectory and control history are shown in both Fig. 

5.5A,B,C and Fig. 5,6 A,B,C a The nominal initial state, initial control 

vector, switch-time vector, time-sequence of the nominal control-com- 

ponent switchings, and final time, are given in Table 5.5 . 

It was found that) 

- -  

The chosen nom- 

To calculate the feedback gains, the nominal and neighboring 

initial times were set equal to zero, and the weighting matrix, W 

(see Eq. 2.10) , was chosen to be the sixth-order identity matrix. 
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Examp le 
I 

Example 
I1 Trajectory 1 Example 

I11 
Examp le 

IV 
Nominal 

.28001 

.12066 

.27800 

.02096 
e 03375 
.01774 

[ 4 [ ti] [ q -B [ Initial Control 
Vector, u(to) - 
rad 1s ec2 

[ $1 [ $1 [ ig] [ l i ]  Final Control 
Vector, u(tf) - 
rad/sec2 

I I Number of 
Switch Times, N 1 1 I 

Switch-Time 
Vector, t -sec 

Time-sequence of 
Control-Component 
Switchings 

--I---- 
I I 

Final Time, 
t - sec f 

50.0 45.043 25.997 31.696 34.795 

I 
. ,  
0.0 
0.0 
0.0 
0.0 
0.0 
r 

.t .09686 
.16594 
.02072 
.02148 
.00312 

. -. 02324 1 ,  -00364 -. 09557 
.00545 
.00289 

.00573 
-. 00707 

-. 04598 
.13538 

-. 01631 
Final State, x(tf) 

I 

Table 5.5. Data and Results for Minimum-Time Satellite 

Attitude-Acquisition Problem. 

87 



5 The s c a l a r  ga in ,  K ( see  Eq. 2,10), w a s  se t  equal  t o  10 . The system 

dynamics f o r  t h i s  problem (Eq. 5.19) are nonl inear  i n  the  s t a t e ,  and 
- - 

hence no s i m p l i f i c a t i o n s  i n  t h e  feedback ga ins ,  GN and go Y 

N = 1,2,3, as def ined  i n  Eq. 3.59 and Eq, 3.60, a r e  poss ib le .*  These 

g a i n s ,  a long wi th  t h e  f i n a l - t i m e  feedback ga in ,  

w i t h  

E (Eq. 3.32 or  Eq. 3.60 

N = O),are given i n  Table 5.6 

The neighboring opt imal  feedback c o n t r o l  scheme f o r  f r e e  te rmina l -  

t i m e  problems was appl ied  t o  four  i n i t i a l  s ta tes ,  l i s t e d  i n  Table 5.5:* 

For each of t h e s e  examples, t he  open-loop phase of t he  neighboring 

c o n t r o l  scheme ( see  Sec t ion  4.4) v e r i f i e d  t h a t  t he  chosen nominal t ra -  

j e c t o r y  i s  appropr i a t e  f o r  t he  chosen i n i t i a l  s ta te  (i .e.  u ( t f )  = 

u ( t f )  f o r  each example t r a j e c t o r y ) .  The neighboring s t a t e  and c o n t r o l  

t i m e  h i s t o r i e s  f o r  t hese  i n i t i a l  s tates are shown i n  Fig. 5.5AYB,C and 

Fig.  5.6A, B, C . Since the  neighboring c o n t r o l  l a w  a lgor i thm i s  based 

upon time-to-go u n t i l  t h e  next  switch time, and u n t i l  t h e  f i n a l  time, 

t h e s e  t r a j e c t o r i e s  are p l o t t e d  t o  te rmina te  a t  the  nominal f i n a l  time. 

This  a l lows one t o  make a b e t t e r  comparison between t h e  neighboring 

and nominal, s t a t e  and c o n t r o l ,  time h i s t o r i e s .  Each neighboring t r a -  

j e c t o r y  i s  a l s o  s p e c i f i e d  i n  Table 5.5 by t h e  i n i t i a l  and f i n a l  c o n t r o l  

v e c t o r ,  t h e  number of switch t imes,  t h e  switch-time vec to r ,  t h e  time- 

sequence of control-component swi tch ings ,  t h e  f i n a l  t i m e ,  and the  f i n a l  

s t a t e .  

- -  

* 
The c a l c u l a t i o n  of t h e  feedback ga ins  i n  Sec t ion  5.1 and Sec t ion  

5.2 was s i m p l i f i e d  s i n c e  the  system dynamics f o r  t h e  problems considered 
t h e r e  a r e  l i n e a r  i n  the  s ta te .  
* 

Example I11 corresponds,  numerical ly ,  t o  the  minimum-time problem 
considered by Wolske ([2], pp. 63-72), 
zero-bang c o n t r o l  func t ion  wi th  a 37 sec. ope ra t ing  t i m e .  
e s t i n g  t o  compare h i s  r e s u l t s  wi th  a</^ those  obtained i n  t h i s  sec t ion .  

He ob ta ins  a sub-optimal,  bang- 
It i s  i n t e r -  
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Feedback Gains: - -  GN,go 

~ ~~ ~ 

- .3564 -12.8022 .4155 .3014 - .6849 

-3.0110 .2969 -.6230 .1879 .4606 '3 
1.7870 -8.1730 .3778 .1209 -.3840 .2668 0.0 

[- 9.0834 -4.9777 - 9.0529 92.9890 92.2471 92.9412 0.01 

.4474 0.0 

2.0921 -1.0755 -12.7690 .4262 .2676 -.6614 

-2,6079 .2783 - -6290 .2069 

[- 9.6150 -2.5462 - 9.1653 92.9530 92.3613 92.8618 0 . 0 )  

[- .2054 - .6644 -12.8128 .5253 .2350 -.7320 0 .03  

[- .1518 - .4843 - 9.3853 93.4503 92.1978 92.5080 0.01 

[ 0.0 0.0 0.0 0.0 0.0 0.0 0.01 

[- .0013 .0024 0.0 93.0655 92.0256 93.0442 0.01 

Table 5.6.  Neighboring Feedback Gains for Minimum-Time 

Satellite Attitude-Acquisition Problem. 
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Tra jec to ry  I i n  Fig.  5.5 A , B , C  i s  very nea r ly  opt imal ,  a s  i n d i -  

ca t ed  by x ( t f )  f o r  Example I i n  Table 5.5. Only the  i n i t i a l  yaw angle  

(e ( t  )) d e v i a t e s  s i g n i f i c a n t l y  from the  nominal. 

t h e  f a c t  t h a t  e l ( t f )  i s  s e v e r a l  times l a r g e r  than  Q2(tf)  and 

Q 3 ( t f )  

a long  t h i s  example t r a j e c t o r y  i s  the  same as t h a t  f o r  t he  nominal tra- 

This  i s  r e f l e c t e d  by 1 0  

Also no te  t h a t  t h e  order  i n  which the  c o n t r o l  components switch 

j ec to ry .  

The dev ia t ions  i n  t h e  neighboring s t a t e s  away from the  nominal path,  

f o r  each of t h e  t h r e e  remaining examples, are much l a r g e r  than those 

i n  Example I. The performance l e v e l  of t h e  neighboring c o n t r o l  scheme 

i s ,  t h e r e f o r e ,  reduced. Also, t h e  order  i n  which t h e  c o n t r o l  components 

swi tch ,  f o r  each of t hese  t h r e e  examples, d i f f e r s  from t h a t  f o r  t he  nominal 

pa th  ( see  Table 5.5, Fig.  5.5C, and Fig.  5.6C). For the  range of i n i -  

t i a l  states considered he re ,  t h e  f i n a l  yaw angle  does not  

exceed 5.6' , t h e  f i n a l  r o l l  angle  (e ( t  1) does not exceed 9.5 , 

and t h e  f i n a l  p i t c h  angle  ( O , ( t f ) )  does not  exceed 1.2 . The f i n a l  

yaw, r o l l ,  and p i t c h  rates (W ( t  ) , w 2 ( t f >  2 w 3 ( t f )  9 r e s p e c t i v e l y )  2 

f o r  t hese  examples, never exceed 

( Q l ( t f ) )  

0 

2 f  
0 

1.7'/sec . 
These dev ia t ions  away from the  d e s i r e d  te rmina l  c o n s t r a i n t s  (Eq. 

5.24) can be  reduced by genera t ing  nominal t r a j e c t o r i e s  which a r e  c l o s e r  

t o  t h e  neighboring i n i t i a l  s tates.  

t h a t ,  i n  gene ra l ,  t h e  te rmina l  c o n s t r a i n t s  w i l l  never be s a t i s f i e d  

exac t ly .  This  i s  due t o  t h e  f a c t  t h a t ,  as one approaches the  te rmina l  

s t a t e ,  t h e  number of remaining switch times i s  not  s u f f i c i e n t  i n  number 

t o  s a t i s f y  t h e  t e rmina l  c o n s t r a i n t s ,  Therefore ,  t h e  neighboring con- 

t r o l  scheme should be used as a neighborhood-acquis i t ion c o n t r o l  law. 

When the  degree of non- sa t i s f ac t ion  of t h e  te rmina l  c o n s t r a i n t s  is  

However, i t  should be kept  i n  mind 
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beyond allowed to l e rances ,  a high-accuracy, s ta t ion-keeping  c o n t r o l  

scheme should be used t o  reduce t h e  dev ia t ions  i n  the  f i n a l  s t a t e  

away from i t s  d e s i r e d  value.  

45.000 Optimal F i n a l  
Time, (tfIMin- sec  25.000 

Table 5.7. Comparison of Neighboring and Optimal Switch 

Times and F i n a l  T i m e s  f o r  Example I and Example 11. 

F i n a l l y ,  i n  order  t o  make a d i r e c t  comparison between t h e  opt imal  

and neighboring c o n t r o l  l a w s ,  t h e  opt imal  and neighboring switch-time 

vec to r s  and f i n a l  t imes,  f o r  Example I and Example 11, a r e  shown i n  

Table 5.7 e The dev ia t ions ,  from t h e i r  opt imal  va lues ,  i n  t h e  neigh- 

bor ing  switch t i m e s  and f i n a l  t i m e s ,  a r e  e a s i l y  deduced from Table 5.7 

f o r  t hese  examples. These dev ia t ions  are f e l t  t o  be r e p r e s e n t a t i v e  

of those  encountered when applying t h e  neighboring c o n t r o l  scheme t o  

i n i t i a l  s tates which a r e  s i m i l a r l y  d i sp l aced  away from any generated 

nominal path.  

9 1  



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The concept of neighboring optimal feedback control of high-order, 

nonlinear systems, with multi-dimensional, discontinuous control func- 

tions, has been investtgated in this paper. 

feedback control law for this class of systems was derived, and the 

implementation of this control law was discussed. The derivation of 

the control law was based upon the assumption that all state and switch- 

time perturbations are infinitesimal. The implementation of this con- 

trol law was constructed to allow for finite, and possibly large, devia- 

tions in the neighboring state away from the nominal trajectory. 

The neighboring optimal 

By allowing for finite state and switch-time perturbations, the 

region, in state-space, for which the neighboring feedback control 

scheme gives meaningful results, is greatly enlarged. When these per- 

turbations are finite, use of the neighboring control scheme will, in 

general, not result in exact satisfaction of the terminal constraints, 

even when the scalar gain, K (see Eq. 2.10) , approaches infinity. 

This is due to the fact that the terms higher than second-order in the 

expansion of the performance index, which were neglected in the cal- 

culation of the neighboring control law, are no longer negligible. 

However, by properly choosing the nominal time, and by allowing for a 

possible reordering of the control-component switching sequence, use of 

the neighboring control scheme can result in approximate satisfaction 

of the terminal constraints. 

inal trajectories, one should be able to construct a neighboring con- 

trol scheme which insures satisfaction of the terminal constraints to 

within any desired degree of accuracy. 

By generating a sufficient number of nom- 
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The technique descr ibed  t o  choose the  nominal time, and the  open- 

loop a lgor i thm which determines t h e  number of switch t imes,  t he  i n i t i a l  

and f i n a l  c o n t r o l  func t ions ,  and 

a r e  presented  wi thout  any r igo rous  mathematical  j u s t i f i c a t i o n s .  

j u s t i f i c a t i o n  i s  poss ib l e  s i n c e  t h e  s t a t e  and switch-time pe r tu rba t ions  

a r e  assumed t o  be f i n i t e ,  and hence, s t r i c t l y  speaking, t h e  concept of 

neighboring opt imal  c o n t r o l  i s  no longer appl icable .  These ideas  a r e  

supported,  however, by a h e u r i s t i c  argument, and by the  r e s u l t s  presented  

i n  Chapter V. A t  least  f o r  t h e  example problems considered i n  t h i s  s tudy ,  

t he  open-loop a lgor i thm performed without  f a i l ,  and the  technique f o r  

choosing the  nominal t ime, descr ibed  i n  Sec t ion  4.2 , performed b e t t e r  

than  a l l  o the r  techniques inves t iga t ed .  Of course,  i f  t he  neighboring 

i n i t i a l  s t a t e  i s  too  f a r  removed from t h e  nominal t r a j e c t o r y ,  use of t he  

neighboring opt imal  c o n t r o l  scheme can no longer be expected t o  g ive  

meaningful r e s u l t s .  

the  appropr i a t e  nominal t r a j e c t o r y ,  

No such 

It can be s t a t e d ,  however, t h a t  when the  reg ion  of i n t e r e s t ,  i n  

s t a t e - space ,  i s  known and i s  small ,  t he  neighboring feedback c o n t r o l  

scheme, developed i n  t h i s  paper ,  i s  very nea r ly  optimal. When t h i s  

r eg ion  i s  unknown, o r  i s  l a rge ,  t h e  neighboring feedback c o n t r o l  scheme 

can be used as a neighborhood-acquis i t ion c o n t r o l  law.  That i s ,  when 

one i s  not  w i l l i n g  t o  genera te  a l a r g e  number of nominal t r a j e c t o r i e s ,  

t he  neighboring c o n t r o l  scheme can be used t o  acqui re  a te rmina l  s t a t e  

which l i e s  i n  a f i n i t e  neighborhood of t h e  d e s i r e d  te rmina l  s t a t e .  I n  

any event ,  t o  determine t h e  performance l e v e l  of t he  neighboring c o n t r o l  

scheme f o r  a p a r t i c u l a r  a p p l i c a t i o n ,  one must perform a systems a n a l y s i s  

and s imula t ion  s imilar  t o  those performed i n  Chapter V. 
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For f u t u r e  i n v e s t i g a t i o n s ,  e f f o r t  might be d i r e c t e d  toward 

reducing  t h e  e r r o r s  i n  t h e  te rmina l  s t a t e  vec tor .  Since the  te rmina l  

s ta te  is ,  i n  gene ra l ,  q u i t e  s e n s i t i v e  t o  switch-time pe r tu rba t ions ,  one 

approach t o  accomplish t h i s  might be t o  perform a l l  computations i n  double 

p rec i s ion ,  One might i n v e s t i g a t e  the  e f f e c t  of r e - i n i t i a t i n g  the  con- 

t r o l  scheme a f t e r  acqu i r ing  a c e r t a i n  neighborhood of t h e  des i r ed  te rmina l  

s t a t e .  One might a l s o  dev i se  and tes t  d i f f e r e n t  techniques f o r  choosing 

t. F i n a l l y ,  t h e  a c t i o n  of t h e  neighboring c o n t r o l  scheme should be exa- 

mined when no i se  i s  p resen t  i n  the  system, when some components of t h e  

c o n t r o l  vec to r  a r e  cont inuous,  when t h e  c o n t r o l  h i s t o r y  i s  composed of 

bo th  continuous and discont inuous segments, and when the  opt imiza t ion  

problem of i n t e r e s t  i s  s ingu la r .  

- 
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APPENDIX A 

CALCULATION OF FIRST- AND SECOND-ORDER 

PERTURBATIONS I N  THE STATE 

The f i r s t - o r d e r  pe r tu rba t ion ,  axI(:) , i s  the  f i r s t - o r d e r  s o l u t i o n  

of t h e  f i r s t - o r d e r ,  per turbed  dynamical equat ions:  

- -  
Sx(F) = T X ( F ) 8 X ( t )  + fu( t )6u(F)  , Sx(t,)  = 6xo (A. 1) 

where, based on t h e  assumed f u n c t i o n a l  dependence of f [ * , * ]  upon 

u(.) , f (F)Su(F) i s  eva lua ted  t o  be 
- 
U 

- -  - 
j e [1,**-2m] , f u ( t ) b u ( t )  = 0 , otherwise . 

Eq. A.2 is  v a l i d  only when a f i r s t - o r d e r  s o l u t i o n  of Eq. A . l  i s  des i red .  

L e t  t h e  s ta te  t r a n s i t i o n  ma t r ix  f o r  Eq. A . l  be @ ( - , e )  . Then the  

s o l u t i o n  of Eq. A. 1 i s  
- 

- 
It has  been assumed t h a t  6 t C  0 and 6 t ,  .> 0 , i = I,***, N . Since 

1 J  - 
t h e  switch t i m e s  are d i s t i n c t ,  and 6ti 

, i = l , * * * , N  , are  i n f i n i -  
- - - - 

tesimal, t + 6t .<T , i = 2 , * * * ,  N and St l j+ t l j  < tf . 
i j  iJ (i-11.j 

Then, w i n g  Eq. A.2 i n  Eq. A.3 , 6x(F) , t o  f i r s t - o r d e r ,  and evaluated 

a t  t = t  , i s  
k j  
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- -  
and 6x(‘i), t o  f i r s t - o r d e r ,  and evaluated a t  t = t , is  

f - 
N - -  - -  

= @(tf , t0)6X0 +I N t f ’ t i j ) A 7 6 t i j  e (A. 5) 
i= 1 

- 
The second-order pe r tu rba t ion ,  6xII(t) , is t h e  second-order 

s o l u t i o n  of t h e  second-order,  per turbed dynamical equat ions.  The 

i -component of 6 x ( t ) ,  between nominal switch t i m e s ,  must s a t i s f y  t h  

1 T - -  
xx 0 

- 
where the  f a c t  t h a t  fuu (c )  0 has been u t i l i z e d . *  The fol lowing 

n o t a t i o n  has  been used i n  w r i t i n g  Eq. A.6 : 

(A. 9) 

* 
It has been assumed t h a t  f[e,e] i s  l i n e a r  i n  u ( * )  . 
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- i  - 
f ( t)  2 xx (A. 10) 

.. 
6x1 (7) (6x (L)) e (A. 11) 

i 

The s t a t e  t r a n s i t i o n  m a t r i x  f o r  Eq. A.6  i s  aga in  @ ( * , e )  . The 
- 

f i r s t - o r d e r  p e r t u r b a t i o n ,  6xI( t )  , appearing i n  Eq. A.6 , i s  the  f i r s t -  

o rder  s o l u t i o n  of Eq. A . l ,  and is thus considered as a prescr ibed 

i -  - 
f u n c t i o n  of t . The s o l u t i o n  of Eq. A . 6  f o r  6x (t,) is  thus 

Again, based on t h e  assumed f u n c t i o n a l  dependence of f [ * , * ]  upon 

- j -  - 
u(e) , fu(F)6u(fi  and fxu(t)6u(F)  are evaluated t o  be 

(A. 13) 
- 
fU(f>SU(t> = 0 , otherwise 9 
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- -  
where M(t )  and afxJ(t) are def ined  t o  be 

4- (A. 14) 
- -  - -  - -  - - -  - -  

- M(t )  = f [ X ( t ) , U ( t i j ) l  - f [ x ( t ) , u ( t .  .)I 
1-J 

t .  .< t <  t. .+ 6t .  
1-j 1-J 1-J 

The las t  two terms i n  Eq. A.12 a r e  now combined by using Eq. A.13 

and r ea r r ang ing  terms: 

The i n t e g r a l  term i n  Eq. A.15 i s  now expanded i n  a Taylor’s  s e r i e s ,  

r e t a i n i n g  terms only through second-order: 

‘kj (A. 16) 

. - -  - -- 
F i n a l l y ,  r e c a l l i n g  t h a t  Af( tk j )  = $fxf[tk;) , E q .  A.16 and Eq. A.15 

are s u b s t i t u t e d  i n t o  Eq. A.12 t o  give* 

* 
This  r e s u l t  agrees  wi th  t h a t  of McNeal ([6], Eq. A.18 and Eq. A.19 ), 

obta ined  f o r  a scalar c o n t r o l  v a r i a b l e  by a s l i g h t l y  d i f f e r e n t  d e r i -  
va t ion .  
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+ a 1 r<l: -))6tk; ] } ] 
i k x kj 

i -  
I1 f Finally, 6x (t ) is composed of the second-order terms in Eq. A . 1 7 :  

(A. 18) 
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APPEJ!?DIX B 

SOME NECESSARY COMPUTATIONS 

The following computation is required in order to obtain the 

expans ion of th 

I I -  

2 

x (tf) 

performance index as it appears in Eq. 3.30: 

- 
L 

n n  

The numbers in parentheses above the equality signs refer to equations 

in the text which justify the ensuing step in the computation. 

When determining the optimal switch-time perturbation, 6t , in 
kj 

Section 3 . 4 ,  it is necessary to differentiate Eq. Bel with respect to 

100 



6t ., This differentiation is performed as follows: 
kj 

- - -  - 
where - a ii (t, 

the nominal control vector only. 

0 ,  t E: [to,tfl , since ~ ~ ~ ( 0 )  is a function of astkj xx 
- -  ’dSXI(t) 

a6tkj 
- 0 .  For To 5 t 5 t , kj 

Thus 

- - - -  
From Eq. 3.29, 6xI(t) , t E: [tkj,tf] , is given by 

Thus, differentiating Eq. B.4 with respect to 6t gives kj 
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S u b s t i t u t i n g  Eq. B . 5  and Eq. B . 4  i n t o  Eq. B . 3  then g ives  t h e  des i red  

r e s u l t :  
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APPENDIX c 

SATELLITE ATTITUDE EQUATIONS OF MOTION 

I n  t h i s  appendix, t h e  a t t i t u d e  equat ions  of motion f o r  t h e  e a r t h -  

o r b i t i n g  s a t e l l i t e ,  considered i n  Sec t ion  5.3, a r e  presented.  These 

equat ions  a r e  n o t  der ived  i n  d e t a i l  he re  s i n c e  they a r e  w e l l  known 

(see ,  f o r  example, [I.], [ 2 ]  , [18 ] ) .  The assumptions made i n  the  

d e r i v a t i o n  of t hese  equat ions ,  and the  coord ina te  systems used t o  

d e s c r i b e  the  a t t i t u d e  and dynamics of t h e  s a t e l l i t e ,  a r e ,  however, 

descr ibed  i n  d e t a i l  i n  order  t o  make e x p l i c i t  t h e  problem discussed  

i n  Sec t ion  5.3. 

The fol lowing assumptions are made i n  o rde r  t o  s impl i fy  the  

dynamical d e s c r i p t i o n  of t h e  s a t e l l i t e :  

Assumption 1. The s a t e l l i t e  a t t i t u d e  i s  con t ro l l ed  by t h r e e  cold 

gas j e t s ,  f i x e d  t o  t h e  s a t e l l i t e ,  and a l l i g n e d  with t h e  t h r e e  p r i n c i -  

p a l  axes of t h e  s a t e l l i t e .  

Assumption 2. The g rav i ty -g rad ien t  and d is turbance  torques a c t i n g  

on t h e  s a t e l l i t e  are n e g l i g i b l e  compared t o  t h e  con t ro l  torques gener- 

a t e d  by the  co ld  gas je ts .  

Assumption 3 .  The s a t e l l i t e ,  h e r e a f t e r  designated body B,  i s  a 

r i g i d  body e 

Assumption 4 .  The e a r t h ,  h e r e a f t e r  des igna ted  a t t r a c t i n g  body E ,  

i s  an  i n e r t i a l l y  f i x e d  po in t  mass. 

i = 1 , 2 , 3 ,  be a s e t  of r ight-handed,  mutually or tho-  
i f  NOW le t  i; 

gonal  u n i t  v e c t o r s ,  f i xed  i n  B y  and p a r a l l e l  t o  t he  p r i n c i p a l  axes of B. 

L e t  t h e  mass c e n t e r ,  B* , of body B, be t h e  o r i g i n  of t he  body-fixed 
- 

r e fe rence  axes,  denoted by (% 9 yB , z ) and s p e c i f i e d  by b i9 i  = 1 , 2 , 3 .  
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- t h  
bi -component of t he  angular  v e l o c i t y  Le t  w i = 1 ,2 ,3 ,  be t h e  i’ 

v e c t o r  of B r e l a t i v e  t o  E (and hence r e l a t i v e  t o  i n e r t i a l  space by 

Assumption 4 above), The p r i n c i p a l  moments of i n e r t i a  of B,  wi th  

r e s p e c t  t o  

F i n a l l y ,  l e t  

co ld  gas j e t s  about 

- 
bi,  i = 1,2 ,3 ,  f o r  B*, are denoted by Ii, i = 1,2,3,  

Ti, i = 1,2 ,3 ,  be the  c o n t r o l  torques generated by t h e  
- 
bi, i = 1,2,3. 

U t i l i z i n g  t h e  above n o t a t i o n  and Assumptions 1-4, Eu le r ’ s  dynarnical 

equat ions  of motion f o r  t h e  s a t e l l i t e  may be w r i t t e n  ( see  [19], pg. 283): 

T w313 - w 1 w 2 (1 1- I21 3 

Now d e f i n e  t h e  normalized i n e r t i a  parameters, kl , k2 , k3 , t o  be 

I3 - I 2  

I1 
kl = ¶ 

I1 - I3 

I 2  
k =  2 -  Y 

I 2  - I1 
I3 

k =  3 -  ¶ 

and d e f i n e  t h e  c o n t r o l  angular  a c c e l e r a t i o n s ,  ul, u2 , u3 , t o  be 
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S u b s t i t u t i n g  Eq. C.2 and Eq. C . 3  i n t o  Eq. (2.1, and rear ranging  terms, 

then g ives  

The ea r th - f ixed  (o r  i n e r t i a l )  r e f e rence  axes,  denoted by (5 , yE , zE), 

and t h e  o r b i t a l  r e f e rence  axes ,  denoted by 

Fig-  C . l  f o r  a s a t e l l i t e ,  B , i n  an e l l i p t i c  o r b i t  about t h e  e a r t h ,  E . 
(xR,yR, zR) , are shown i n  

Both zE and z are normal t o  t h e  o r b i t  plane.  It i s  convenienr: t o  

d i r e c t  % a long  t h e  r a d i u s  v e c t o r ,  p , and t o  d i r e c t  toward the  

o r b i t  per igee .  In  Fig.  C . l ,  "atr i s  t h e  magnitude of the  semi-major 

R - 

a x i s ,  e i s  t h e  e c c e n t r i c i t y  of t h e  o r b i t ,  and e i s  the  t r u e  anomaly. 

The a t t i t u d e  of B , i n  i n e r t i a l  space,  i s  s p e c i f i e d  by the  th ree -  

ei  , i = 1,2 ,3  . These angles  a r e  def ined  t o  be the  a x i s  Euler  angles ,  

magnitudes of success ive  r o t a t i o n s ,  r e l a t i v e  t o  t h e  

r e fe rence  frame, about t he  

A p i c t o r i a l  d e s c r i p t i o n  of 

(x;,y;,z;) and (x;, y i ,  z # )  r ep resen t  t h e  in te rmedia te  p o s i t i o n s ,  

between success ive  r o t a t i o n s ,  of t he  

angles  e1,Q2,e3 
ang le s ,  r e spec t ive ly .  

(%,yR,zR) 

(x, ,yB,zB) r e fe rence  axes,  r e spec t ive ly .  

Q i  , i = 1,2 ,3 ,  i s  given i n  Fig.  C.2, where 

(XB'YB, z B ) re ference  axes. The 

are commonly r e f e r r e d  t o  as the  yaw, r o l l ,  and p i t c h  

The k inemat ica l  equat ions ,  r e l a t i n g  t h e  th ree -ax i s  E u l e r  angles  t o  

t h e  components of t h e  i n e r t i a l  angular  v e l o c i t y  of B , are w r i t t e n  as 

105 



Figure  C . l .  Reference Frames Associated With S a t e l l i t e  i n  E l l i p t i c a l  
Orb i t .  

Figure C.2. P i c t o r i a l  Descr ip t ion  of Three-Axis Euler  Angles. 
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fo l lows  (see E181 pg. 9): 

- c s c ) + e c c  + e 2 s 3  
1 2 3  1 2 3  w1 = 0(s1s3 

w 2 = e ( s c  + c s s )  - 0 c s  + e 2 c 3  
1 3  1 2 3  1 2 3  

. 

where s = s i n ( e i )  , i = 1,2 ,3 ,  and c = cos (ei) , i = 1,2 ,3  . 
i i 

Solving Eq. C.5 f o r  , e 2  , and 0 gives  
3 

, 

1 

= [-s c u) + s s u) + c2'u3- c p l  03 c2  2 3 1  2 3 2  

Note t h a t  a s i n g u l a r i t y  appears  i n  Eq. C . 6  when 

d i f f i c u l t y  i s  avoided i n  S e c t i o n  5.3 by simply choosing i n i t i a l  s ta tes  

such t h a t  

f e rence  ( see  [2 ] ,  pg. 13) e x i s t  when spec i fy ing  the  s a t e l l i t e  o r i e n t a -  

e 2  = 90' . This 

le,( t) l  < 90' , to <_ t 5 tf . Furthermore, reg ions  of i n d i f -  

t i o n  by the  th ree -ax i s  Euler  angles ,  

t h e  f a c t  t h a t  a g iven  geometr ica l  o r i e n t a t i o n ,  s p e c i f i e d  by 6 

i = 1,2 ,3 ,  may a l s o  be s p e c i f i e d  by e i  + 2nm , i = 1,2,3,  where m 

any p o s i t i v e  in t ege r .  The c o n t r o l  problems c rea t ed  by t h i s  mul t i -  

O i  , i = 1 ,2 ,3  . This i s  due t o  

i y  

i s  

valued n a t u r e  of t h e  Euler  angles  a r e  aga in  avoided i n  Sec t ion  5.3 

by choosing i n i t i a l  s t a t e s  such t h a t  

i = 1 , 3 .  

le i ( t ) l  e 180' , to 5 t 5 t f y  

Eq. C.4 and Eq. C.6 a r e  the  equat ions  of motion u t i l i z e d  i n  Sec- 
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tion 5.3 to solve the satellite attitude-acquisition problem. In 

Eqo C.6 , 0(t) 

of interest, and is therefore considered to be a prescribed function. 

to <, t 5 t f , is determined by the particular orbit 
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APPENDIX D 

STATE DETERMINATION FOR MINIMUM-TIME 

SATELLITE ATTITUDE-ACQUISITION PROBLEM 

The neighboring feedback c o n t r o l  scheme developed i n  t h i s  d i s s e r -  

t a t i o n  i s  based upon the  assumption t h a t  t he  system s t a t e ,  x ( t )  , i s  

known exac t ly .  McNeal [6] proved a sepa ra t ion  theorem which allows 

one t o  r ep lace  x ( t )  wi th  an e s t ima te  of t he  s t a t e ,  fi(t) , i n  t h e  

neighboring feedback c o n t r o l  l aw.  This  theorem i s  based upon the  assump- 

t i o n  t h a t  t he  system dynamics and the  s t a t e  measurements are contamin- 

a t e d  wi th  a d d i t i v e  no i se  which possesses  the  p r o p e r t i e s  of whi te  Gaussian 

random processes .  It i s  assumed t h a t  c o n t r o l  and es t imat ion  a r e  separ -  

a b l e  i n  t h e  minimum-time s a t e l l i t e  a t t i t u d e - a c q u i s i t i o n  problem d i s -  

cussed i n  Sec t ion  5.3. The purpose of t h i s  appendix is  t o  b r i e f l y  d i s -  

c u s ,  without  going i n t o  t h e  d e t a i l s  of , e s t i m a t i o n  theory,  t he  genera l  

approach used t o  e s t ima te  the  s t a t e  of t he  s a t e l l i t e  f o r  t h i s  a t t i t u d e -  

a c q u i s i t i o n  problem. 

The s t a t e  v a r i a b l e s  f o r  t h i s  system were chosen t o  be t h e  th ree -ax i s  

Euler  angles ,  e i ( t ) , i  = 1 , 2 , 3 ,  r e l a t i v e  t o  the  o r b i t a l  re fe rence  axes,and the  

i n e r t i a l  angular  v e l o c i t y  components a long the  p r i n c i p a l  axes of t h e  s a t e l -  

l i t e , u i ( t ) ,  i = 1 , 2 , 3  (see Appendix C) .  Information about w i ( t )  , 

i = 1,2,3, may be obtained from a th ree -ax i s ,  s t rapped  down, s i n g l e  

degree-of-freedom gyro package. 

a x i s  ra te  o r  r a t e - i n t e g r a t i n g  gyros which are f ixed  t o  t h e  s a t e l l i t e  and 

whose inpu t  axes are p a r a l l e l  t o  each p r i n c i p a l  a x i s  of t he  s a t e l l i t e .  

This  package c o n s i s t s  of t h r e e  s i n g l e -  

* 

* 
I f  t he  body angular  r a t e s  a r e  measured about a non-pr inc ipa l  a x i s  

coord ina te  system, they can e a s i l y  be transformed i n t o  a p r i n c i p a l  axis 
system by a cons t an t  3 x 3 mat r ix  t ransformat ion  and a l l  computations 
can then  t ake  p l ace  i n  t h a t  coord ina te  frame. 
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The outputs from these gyros are the angular rates, 

and additive noise due to gyro unbalance, stray magnetic field and 

wi(t) , i = 1,2,3, 

temperature effects, gyro-misalignment errors, gyro bearing friction, 

and other causes. The gyro error is usually modeled by a bias error 

plus a zero-mean white Gaussian random process. For precise angular 

rate determination, these errors must be accurately estimated and then 

subtracted from the gyro-output signal. 

Assuming that w,(t) , i = 1,2,3, can accurately be determined 
1 

in this manner, the Euler angles can be calculated by integrating the 

satellite's kinematical equations, repeated here for convenience (see 

Eq. C.6): 

where 8 is taken to be a prescribed function. Two fundamental 

problems arise when using this approach. First, initial values for the 

Euler angles are usually inaccurate, if available, since they cannot 

be measured directly. Second, since the gyros possess bias errors, 

the long-term errors in ei(t), i = 1,2,3, will be unbounded. 

Jackson [20 ] discusses and demonstrates the fact that compensation 

for the angular rate measurement bias errors and noise is possible 

when some satellite orientation information is available. In addition, 

this information may be used to obtain estimates, with bounded long- 
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term errors, of the three-axis Euler angles. The required orientation 

information may be obtained by utilizing one or more onboard sensors 

which may or may not be mounted on gimbals. 

star sensors, and landmark sensors, to name a few, utilize telescopic 

or photographic devices to detect the horizon, the sun, a specified star, 

and a specified landmark, respectively. If the sensor is mounted on 

gimbals, a servomechanism can be utilized, after acquisition, to "hold" 

the target for as long as the target is in the satellite's field of view. 

If the sensor is rigidly fixed to the satellite, the sensor outputs are 

time pulses which occur whenever the target passes the sensor's field 

of view. 

Horizon sensors, sun sensors, 

The main feature of the sensors mentioned above is that each det- 
- 

ermines the representation of a unit vector, V , in the body fixed 
reference frame. Denote this representation by VB , and let VR denote 

V in the orbital reference frame. After target acquisition, V is 

the unit vector parallel to the sensor's line of sight and directed to- 

ward the target. 

- - 
- - 

Since the satellite's orbital motion is assumed known, 
- 
VR is a prescribed function of orbital position. 

There exists a real orthogonal transformation matrix, TBR , which 
- - 

maps VR into Vg . Thus, 

- 
Vg = TgRYR 

For the three-axis Euler angle representation of attitude, the elements 

of T are trigonometric functions of Qi(t), i = 1 , 2 , 3  . Thus, the 
sensor outputs are nonlinear functions of the Euler angles which may 

or may not supply sufficient information to determine the satellite 

orientation. 

BR 

In addition, any sensor used to obtain these functions 
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1 be contaminated with noise. This noise must be modeled and com- 

pensated for in order to accurately extract the satellite attitude from 

the given measurements. 

Fortunately, existing gyros and sensors often possess error char- 

acteristics that can be modeled quite accurately as normally dis- 

tributed white random processes. This allows one to turn to the exten- 

sive literature on linear and nonlinear stochastic estimation theory to 

implement a system for estimating 

ei(t), i = 1,2,3 (see, for example, [13] and 

designed to regulate the transient behavior of the state error x(t) = 

x(t) - p(t) or filters, designed to determine Q(t) in some optimal 

sense, can be developed to determine an estimate of the satellite state. 

The gyro package and at least one attitude sensor are required in order 

to develop an accurate state estimator. 

wi(t) , i = 1,2,3, as well as 

[ZO] ) .  Either observers, 
4 

The existing theory for linear estimators is quite extensive. 

To be applicable to the system of interest here, the state dynamical 

equations (Eq. C . 4  and Eq. C.6) and the state observations must be 

linearized about a nominal path. The estimator would then be accur- 

ate only when state deviations from the nominal are small. For the 

neighboring control scheme, this technique would probably work quite 

well when the nominal path is the optimal path generated by the nom- 

inal control law. When the state deviations are large, however, it would 

probably be necessary to use nonlinear estimation techniques since the 

dynamical equations for ei(t) , i = 1,2,3, and the state observations 

are highly nonlinear. Since nonlinear estimation theory is not as highly 

developed as linear estimation theory, the performance of a given nonlin- 

ear estimator must be determined by a simulation of the particular sys- 

tem of interest. It is noted that all significant sensor errors must 
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be incorporated in the design of the linear or nonlinear state esti- 

mator. 

in the estimator dynamics. 

In particular, bias errors, when present, must appear explicitly 

It is finally noted that other attitude representations may also 

be used to specify the system state, such as the Euler parameter and 

direction cosine representations. A discussion of these representations 

and their advantages over the Euler angle representation, with regard 

to nonlinear state estimation, is presented in [20]. 
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